Cooper Zachary S, Rapp Josephine Z, Shoemaker Anna M D, Anderson Rika E, Zhong Zhi-Ping, Deming Jody W
School of Oceanography, University of Washington, Seattle, WA, United States.
Astrobiology Program, University of Washington, Seattle, WA, United States.
Front Microbiol. 2022 Jun 6;13:879116. doi: 10.3389/fmicb.2022.879116. eCollection 2022.
spp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of genomes, composed of novel isolates and assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska. Using these new genomes and 45 representative publicly available genomes of spp. from other settings, we assembled a pangenome to examine how the new extremophile members fit evolutionarily and ecologically, based on genetic potential and environmental source. This first genus-wide genomic analysis revealed that spp. in general encode metabolic pathways that are thermodynamically favored at low temperature, cover a broad range of organic compounds, and optimize protein usage, e.g., the Entner-Doudoroff pathway, the glyoxylate shunt, and amino acid metabolism. The new isolates contributed to a distinct clade of subzero brine-dwelling spp. that diverged genotypically and phylogenetically from all other members. The subzero brine clade displays genomic characteristics that may explain competitive adaptations to the extreme environments they inhabit, including more abundant membrane transport systems (e.g., for organic substrates, compatible solutes, and ions) and stress-induced transcriptional regulatory mechanisms (e.g., for cold and salt stress) than in the other clades. We also identified more abundant signatures of potential horizontal transfer of genes involved in transcription, the mobilome, and a variety of metabolite exchange systems, which led to considering the importance of this evolutionary mechanism in an extreme environment where adaptation vertical evolution is physiologically rate limited. Assessing these new extremophile genomes in a pangenomic context has provided a unique view into the ecological and evolutionary history of the genus , particularly with regard to its remarkable diversity and its opportunism in extremely cold and saline environments.
某些物种在盐环境中广泛分布,展现出多样的代谢方式,使其能够在这些环境中竞争生存,其中一些环境在盐度和温度方面都极为极端。在此,我们介绍了一个独特的基因组集群,它由新分离株和从阿拉斯加乌特恰维克附近采集的永久冻土中零下、高盐度低温盐水(源自古代海水的液体栖息地)获得的组装基因组组成。利用这些新基因组以及来自其他环境的45个该物种具有代表性的公开可用基因组,我们组装了一个泛基因组,以基于遗传潜力和环境来源来研究这些新的极端嗜盐菌成员在进化和生态上的契合度。这项首次全属范围的基因组分析表明,该物种一般编码在低温下热力学上更有利的代谢途径,涵盖广泛的有机化合物,并优化蛋白质利用,例如恩特纳-杜德洛夫途径、乙醛酸循环支路和氨基酸代谢。这些新分离株形成了一个独特的零下盐水栖息该物种分支,在基因型和系统发育上与所有其他该物种成员不同。与其他该物种分支相比,零下盐水分支展现出可能解释其对所栖息极端环境竞争适应性的基因组特征,包括更丰富的膜转运系统(例如用于有机底物、相容性溶质和离子)以及应激诱导的转录调控机制(例如针对寒冷和盐胁迫)。我们还鉴定出在转录、可移动基因组以及各种代谢物交换系统中涉及的基因潜在水平转移的更丰富特征,这促使我们考虑这种进化机制在适应垂直进化在生理上速率受限的极端环境中的重要性。在泛基因组背景下评估这些新的极端嗜盐菌基因组,为该属的生态和进化历史提供了独特视角,特别是关于其显著的多样性以及在极寒和高盐环境中的机会主义。