Suppr超能文献

北极零下海冰和冻土层卤水微生物群落中不同的基因组适应性

Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines.

作者信息

Rapp Josephine Z, Sullivan Matthew B, Deming Jody W

机构信息

School of Oceanography, University of Washington, Seattle, WA, United States.

Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States.

出版信息

Front Microbiol. 2021 Jul 22;12:701186. doi: 10.3389/fmicb.2021.701186. eCollection 2021.

Abstract

Subzero hypersaline brines are liquid microbial habitats within otherwise frozen environments, where concentrated dissolved salts prevent freezing. Such extreme conditions presumably require unique microbial adaptations, and possibly altered ecologies, but specific strategies remain largely unknown. Here we examined prokaryotic taxonomic and functional diversity in two seawater-derived subzero hypersaline brines: first-year sea ice, subject to seasonally fluctuating conditions; and ancient cryopeg, under relatively stable conditions geophysically isolated in permafrost. Overall, both taxonomic composition and functional potential were starkly different. Taxonomically, sea-ice brine communities (∼10 cells mL) had greater richness, more diversity and were dominated by bacterial genera, including , , , and , whereas the more densely inhabited cryopeg brines (∼10 cells mL) lacked these genera and instead were dominated by . Functionally, however, sea ice encoded fewer accessory traits and lower average genomic copy numbers for shared traits, though DNA replication and repair were elevated; in contrast, microbes in cryopeg brines had greater genetic versatility with elevated abundances of accessory traits involved in sensing, responding to environmental cues, transport, mobile elements (transposases and plasmids), toxin-antitoxin systems, and type VI secretion systems. Together these genomic features suggest adaptations and capabilities of sea-ice communities manifesting at the community level through seasonal ecological succession, whereas the denser cryopeg communities appear adapted to intense bacterial competition, leaving fewer genera to dominate with brine-specific adaptations and social interactions that sacrifice some members for the benefit of others. Such cryopeg genomic traits provide insight into how long-term environmental stability may enable life to survive extreme conditions.

摘要

零下高盐卤水是其他部分已冻结环境中的液态微生物栖息地,其中高浓度的溶解盐可防止结冰。这种极端条件可能需要独特的微生物适应性,甚至可能是改变的生态,但具体策略仍大多未知。在这里,我们研究了两种源自海水的零下高盐卤水中原核生物的分类和功能多样性:一是受季节性波动条件影响的一年生海冰;另一个是古老的冻土层卤水,处于相对稳定的条件下,在永冻层中被地球物理隔离。总体而言,分类组成和功能潜力都截然不同。在分类学上,海冰卤水群落(约10个细胞/毫升)具有更高的丰富度、更多样性,且以细菌属为主,包括、、、和,而居住密度更高的冻土层卤水(约10个细胞/毫升)则缺少这些属,而是以为主。然而,在功能方面,海冰编码的辅助性状较少,共享性状的平均基因组拷贝数较低,尽管DNA复制和修复有所增加;相比之下,冻土层卤水中的微生物具有更大的遗传通用性,涉及感知、响应环境线索、运输、移动元件(转座酶和质粒)、毒素-抗毒素系统和VI型分泌系统的辅助性状丰度升高。这些基因组特征共同表明,海冰群落的适应性和能力通过季节性生态演替在群落水平上体现,而密度更高的冻土层群落似乎适应了激烈的细菌竞争,留下较少的属以卤水特异性适应和社会相互作用为主导,即牺牲一些成员以造福其他成员。这种冻土层基因组特征为长期环境稳定性如何使生命在极端条件下生存提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/088b/8339730/7df372e50b1b/fmicb-12-701186-g001.jpg

相似文献

1
Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines.
Front Microbiol. 2021 Jul 22;12:701186. doi: 10.3389/fmicb.2021.701186. eCollection 2021.
4
Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice.
mSystems. 2020 Jun 16;5(3):e00246-20. doi: 10.1128/mSystems.00246-20.
5
Modeled energetics of bacterial communities in ancient subzero brines.
Front Microbiol. 2023 Jul 26;14:1206641. doi: 10.3389/fmicb.2023.1206641. eCollection 2023.
6
Evolutionary Divergence of Strains in Cryopeg Brines as Revealed by Pangenomics.
Front Microbiol. 2022 Jun 6;13:879116. doi: 10.3389/fmicb.2022.879116. eCollection 2022.
9
Assessment of Hydrocarbon Degradation Potential in Microbial Communities in Arctic Sea Ice.
Microorganisms. 2022 Feb 1;10(2):328. doi: 10.3390/microorganisms10020328.
10
Bacterial communities in Arctic first-year drift ice during the winter/spring transition.
Environ Microbiol Rep. 2016 Aug;8(4):527-35. doi: 10.1111/1758-2229.12428. Epub 2016 Jun 27.

引用本文的文献

2
Chemoautotrophy in subzero environments and the potential for cold-adapted Rubisco.
Appl Environ Microbiol. 2025 Jun 18;91(6):e0060425. doi: 10.1128/aem.00604-25. Epub 2025 May 30.
3
Extant life detection using label-free video microscopy in analog aquatic environments.
PLoS One. 2025 Mar 12;20(3):e0318239. doi: 10.1371/journal.pone.0318239. eCollection 2025.
4
Extreme smells-microbial production of volatile organic compounds at the limits of life.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf004.
5
Increasing transposase abundance with ocean depth correlates with a particle-associated lifestyle.
mSystems. 2024 Mar 19;9(3):e0006724. doi: 10.1128/msystems.00067-24. Epub 2024 Feb 21.
6
Nitrogen and sulfur metabolisms encoded in prokaryotic communities associated with sea ice algae.
ISME Commun. 2023 Dec 11;3(1):131. doi: 10.1038/s43705-023-00337-2.
7
Microbial sensor variation across biogeochemical conditions in the terrestrial deep subsurface.
mSystems. 2024 Jan 23;9(1):e0096623. doi: 10.1128/msystems.00966-23. Epub 2023 Dec 7.
8
Modeled energetics of bacterial communities in ancient subzero brines.
Front Microbiol. 2023 Jul 26;14:1206641. doi: 10.3389/fmicb.2023.1206641. eCollection 2023.
10
Evolutionary Divergence of Strains in Cryopeg Brines as Revealed by Pangenomics.
Front Microbiol. 2022 Jun 6;13:879116. doi: 10.3389/fmicb.2022.879116. eCollection 2022.

本文引用的文献

1
phyloFlash: Rapid Small-Subunit rRNA Profiling and Targeted Assembly from Metagenomes.
mSystems. 2020 Oct 27;5(5):e00920-20. doi: 10.1128/mSystems.00920-20.
2
Microbial Metabolic Redundancy Is a Key Mechanism in a Sulfur-Rich Glacial Ecosystem.
mSystems. 2020 Aug 4;5(4):e00504-20. doi: 10.1128/mSystems.00504-20.
3
Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice.
mSystems. 2020 Jun 16;5(3):e00246-20. doi: 10.1128/mSystems.00246-20.
4
Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate.
Nat Commun. 2020 May 4;11(1):2201. doi: 10.1038/s41467-020-15725-8.
5
hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus.
Sci Rep. 2020 Feb 18;10(1):2865. doi: 10.1038/s41598-020-59283-x.
6
Next-generation physiology approaches to study microbiome function at single cell level.
Nat Rev Microbiol. 2020 Apr;18(4):241-256. doi: 10.1038/s41579-020-0323-1. Epub 2020 Feb 13.
7
Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus.
Sci Rep. 2020 Jan 15;10(1):330. doi: 10.1038/s41598-019-57006-5.
9
Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259. doi: 10.1093/nar/gkz239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验