Suppr超能文献

古代零下盐水环境中细菌群落的能量模型

Modeled energetics of bacterial communities in ancient subzero brines.

作者信息

Kanaan Georges, Hoehler Tori M, Iwahana Go, Deming Jody W

机构信息

School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States.

NASA Ames Research Center, Moffett Field, CA, United States.

出版信息

Front Microbiol. 2023 Jul 26;14:1206641. doi: 10.3389/fmicb.2023.1206641. eCollection 2023.

Abstract

Cryopeg brines are isolated volumes of hypersaline water in subzero permafrost. The cryopeg system at Utqiaġvik, Alaska, is estimated to date back to 40 ka BP or earlier, a remnant of a late Pleistocene Ocean. Surprisingly, the cryopeg brines contain high concentrations of organic carbon, including extracellular polysaccharides, and high densities of bacteria. How can these physiologically extreme, old, and geologically isolated systems support such an ecosystem? This study addresses this question by examining the energetics of the Utqiaġvik cryopeg brine ecosystem. Using literature-derived assumptions and new measurements on archived borehole materials, we first estimated the quantity of organic carbon when the system formed. We then considered two bacterial growth trajectories to calculate the lower and upper bounds of the cell-specific metabolic rate of these communities. These bounds represent the first community estimates of metabolic rate in a subzero hypersaline environment. To assess the plausibility of the different growth trajectories, we developed a model of the organic carbon cycle and applied it to three borehole scenarios. We also used dissolved inorganic carbon and nitrogen measurements to independently estimate the metabolic rate. The model reconstructs the growth trajectory of the microbial community and predicts the present-day cell density and organic carbon content. Model input included measured rates of the enzymatic conversion of particulate to dissolved organic carbon under subzero brine conditions. A sensitivity analysis of model parameters was performed, revealing an interplay between growth rate, cell-specific metabolic rate, and extracellular enzyme activity. This approach allowed us to identify plausible growth trajectories consistent with the observed bacterial densities in the cryopeg brines. We found that the cell-specific metabolic rate in this system is relatively high compared to marine sediments. We attribute this finding to the need to invest energy in the production of extracellular enzymes, for generating bioavailable carbon from particulate organic carbon, and the production of extracellular polysaccharides for cryoprotection and osmoprotection. These results may be relevant to other isolated systems in the polar regions of Earth and to possible ice-bound brines on worlds such as Europa, Enceladus, and Mars.

摘要

低温盐水是多年冻土中零下温度的高盐水独立水体。阿拉斯加乌特恰维克的低温盐水系统估计可追溯到4万年前或更早,是晚更新世海洋的遗迹。令人惊讶的是,低温盐水含有高浓度的有机碳,包括细胞外多糖,以及高密度的细菌。这些生理条件极端、年代久远且地质上孤立的系统如何支持这样一个生态系统?本研究通过研究乌特恰维克低温盐水生态系统的能量学来解决这个问题。利用文献中的假设和对存档钻孔材料的新测量,我们首先估计了该系统形成时有机碳的数量。然后,我们考虑了两种细菌生长轨迹,以计算这些群落细胞特异性代谢率的下限和上限。这些界限代表了对零下高盐环境中代谢率的首次群落估计。为了评估不同生长轨迹的合理性,我们开发了一个有机碳循环模型,并将其应用于三种钻孔情况。我们还利用溶解无机碳和氮的测量来独立估计代谢率。该模型重建了微生物群落的生长轨迹,并预测了当前的细胞密度和有机碳含量。模型输入包括在零下盐水条件下颗粒态有机碳酶促转化为溶解态有机碳的测量速率。对模型参数进行了敏感性分析,揭示了生长速率、细胞特异性代谢率和细胞外酶活性之间的相互作用。这种方法使我们能够确定与低温盐水中观察到的细菌密度一致的合理生长轨迹。我们发现,与海洋沉积物相比,该系统中的细胞特异性代谢率相对较高。我们将这一发现归因于需要投入能量来生产细胞外酶,以便从颗粒态有机碳中生成生物可利用碳,以及生产用于冷冻保护和渗透保护的细胞外多糖。这些结果可能与地球极地地区的其他孤立系统以及木卫二、土卫二和火星等星球上可能存在的冰封盐水有关

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caae/10411740/7b5b837bf2b6/fmicb-14-1206641-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验