Li Zhipeng, Long Yong, Chun Il Yong
University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China.
School of Electronic & Electrical Engineering and Department of Artificial Intelligence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea.
Med Phys. 2023 Apr;50(4):2195-2211. doi: 10.1002/mp.15817. Epub 2022 Jul 10.
Dual-energy computed tomography (DECT) has widely been used in many applications that need material decomposition. Image-domain methods directly decompose material images from high- and low-energy attenuation images, and thus, are susceptible to noise and artifacts on attenuation images. The purpose of this study is to develop an improved iterative neural network (INN) for high-quality image-domain material decomposition in DECT, and to study its properties.
We propose a new INN architecture for DECT material decomposition. The proposed INN architecture uses distinct cross-material convolutional neural network (CNN) in image refining modules, and uses image decomposition physics in image reconstruction modules. The distinct cross-material CNN refiners incorporate distinct encoding-decoding filters and cross-material model that captures correlations between different materials. We study the distinct cross-material CNN refiner with patch-based reformulation and tight-frame condition.
Numerical experiments with extended cardiac-torso phantom and clinical data show that the proposed INN significantly improves the image quality over several image-domain material decomposition methods, including a conventional model-based image decomposition (MBID) method using an edge-preserving regularizer, a recent MBID method using prelearned material-wise sparsifying transforms, and a noniterative deep CNN method. Our study with patch-based reformulations reveals that learned filters of distinct cross-material CNN refiners can approximately satisfy the tight-frame condition.
The proposed INN architecture achieves high-quality material decompositions using iteration-wise refiners that exploit cross-material properties between different material images with distinct encoding-decoding filters. Our tight-frame study implies that cross-material CNN refiners in the proposed INN architecture are useful for noise suppression and signal restoration.
双能计算机断层扫描(DECT)已广泛应用于许多需要物质分解的领域。图像域方法直接从高能和低能衰减图像中分解物质图像,因此容易受到衰减图像上噪声和伪影的影响。本研究的目的是开发一种改进的迭代神经网络(INN),用于DECT中的高质量图像域物质分解,并研究其特性。
我们提出了一种用于DECT物质分解的新INN架构。所提出的INN架构在图像细化模块中使用不同的跨物质卷积神经网络(CNN),并在图像重建模块中使用图像分解物理原理。不同的跨物质CNN细化器结合了不同的编码-解码滤波器和捕获不同物质之间相关性的跨物质模型。我们研究了基于补丁重新表述和紧框架条件的不同跨物质CNN细化器。
使用扩展心脏躯干模型和临床数据进行的数值实验表明,与几种图像域物质分解方法相比,所提出的INN显著提高了图像质量,这些方法包括使用保边正则化的传统基于模型的图像分解(MBID)方法、使用预学习的物质特定稀疏变换的最近MBID方法以及非迭代深度CNN方法。我们基于补丁重新表述的研究表明,不同跨物质CNN细化器的学习滤波器可以近似满足紧框架条件。
所提出的INN架构使用迭代细化器实现了高质量的物质分解,这些细化器利用不同的编码-解码滤波器利用不同物质图像之间的跨物质特性。我们的紧框架研究表明,所提出的INN架构中的跨物质CNN细化器可用于噪声抑制和信号恢复。