Duan Z, Li D, Zeng D, Bian Z, Ma J
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Guangzhou Key Laboratory of Medical Radioimaging and Detection Technology, Guangzhou 510515, China.
Nan Fang Yi Ke Da Xue Xue Bao. 2023 Apr 20;43(4):620-630. doi: 10.12122/j.issn.1673-4254.2023.04.16.
To propose a semi-supervised material quantitative intelligent imaging algorithm based on prior information perception learning (SLMD-Net) to improve the quality and precision of spectral CT imaging.
The algorithm includes a supervised and a self- supervised submodule. In the supervised submodule, the mapping relationship between low and high signal-to-noise ratio (SNR) data was constructed through mean square error loss function learning based on a small labeled dataset. In the self- supervised sub-module, an image recovery model was utilized to construct the loss function incorporating the prior information from a large unlabeled low SNR basic material image dataset, and the total variation (TV) model was used to to characterize the prior information of the images. The two submodules were combined to form the SLMD-Net method, and pre-clinical simulation data were used to validate the feasibility and effectiveness of the algorithm.
Compared with the traditional model-driven quantitative imaging methods (FBP-DI, PWLS-PCG, and E3DTV), data-driven supervised-learning-based quantitative imaging methods (SUMD-Net and BFCNN), a material quantitative imaging method based on unsupervised learning (UNTV-Net) and semi-supervised learning-based cycle consistent generative adversarial network (Semi-CycleGAN), the proposed SLMD-Net method had better performance in both visual and quantitative assessments. For quantitative imaging of water and bone materials, the SLMD-Net method had the highest PSNR index (31.82 and 29.06), the highest FSIM index (0.95 and 0.90), and the lowest RMSE index (0.03 and 0.02), respectively) and achieved significantly higher image quality scores than the other 7 material decomposition methods (P < 0.05). The material quantitative imaging performance of SLMD-Net was close to that of the supervised network SUMD-Net trained with labeled data with a doubled size.
A small labeled dataset and a large unlabeled low SNR material image dataset can be fully used to suppress noise amplification and artifacts in basic material decomposition in spectral CT and reduce the dependence on labeled data-driven network, which considers more realistic scenario in clinics.
提出一种基于先验信息感知学习的半监督材料定量智能成像算法(SLMD-Net),以提高光谱CT成像的质量和精度。
该算法包括一个监督子模块和一个自监督子模块。在监督子模块中,基于一个小的标记数据集,通过均方误差损失函数学习构建低信噪比(SNR)数据与高信噪比数据之间的映射关系。在自监督子模块中,利用图像恢复模型构建包含来自大量未标记低SNR基础材料图像数据集先验信息的损失函数,并使用总变差(TV)模型来表征图像的先验信息。将这两个子模块组合形成SLMD-Net方法,并使用临床前模拟数据验证该算法的可行性和有效性。
与传统的模型驱动定量成像方法(FBP-DI、PWLS-PCG和E3DTV)、基于数据驱动监督学习的定量成像方法(SUMD-Net和BFCNN)、基于无监督学习的材料定量成像方法(UNTV-Net)以及基于半监督学习的循环一致生成对抗网络(Semi-CycleGAN)相比,所提出的SLMD-Net方法在视觉和定量评估方面均具有更好的性能。对于水和骨材料的定量成像,SLMD-Net方法分别具有最高的PSNR指数(31.82和29.06)、最高的FSIM指数(0.95和0.90)以及最低的RMSE指数(0.03和0.02),并且获得的图像质量得分显著高于其他7种材料分解方法(P < 0.05)。SLMD-Net的材料定量成像性能接近于使用两倍大小的标记数据训练的监督网络SUMD-Net。
一个小的标记数据集和一个大的未标记低SNR材料图像数据集可以充分用于抑制光谱CT基础材料分解中的噪声放大和伪影,并减少对标记数据驱动网络的依赖,该算法考虑了临床中更现实的情况。