文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在数字糖尿病预防项目中发现参与度人物角色

Discovering Engagement Personas in a Digital Diabetes Prevention Program.

作者信息

Hori Jonathan H, Sia Elizabeth X, Lockwood Kimberly G, Auster-Gussman Lisa A, Rapoport Sharon, Branch OraLee H, Graham Sarah A

机构信息

Lark Health, 2570 W El Camino Real, Mountain View, CA 94040, USA.

出版信息

Behav Sci (Basel). 2022 May 24;12(6):159. doi: 10.3390/bs12060159.


DOI:10.3390/bs12060159
PMID:35735369
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9220103/
Abstract

Digital health technologies are shaping the future of preventive health care. We present a quantitative approach for discovering and characterizing engagement personas: longitudinal engagement patterns in a fully digital diabetes prevention program. We used a two-step approach to discovering engagement personas among = 1613 users: (1) A univariate clustering method using two unsupervised k-means clustering algorithms on app- and program-feature use separately and (2) A bivariate clustering method that involved comparing cluster labels for each member across app- and program-feature univariate clusters. The univariate analyses revealed five app-feature clusters and four program-feature clusters. The bivariate analysis revealed five unique combinations of these clusters, called engagement personas, which represented 76% of users. These engagement personas differed in both member demographics and weight loss. Exploring engagement personas is beneficial to inform strategies for personalizing the program experience and optimizing engagement in a variety of digital health interventions.

摘要

数字健康技术正在塑造预防性医疗保健的未来。我们提出了一种用于发现和描述参与角色的定量方法:一个全数字糖尿病预防计划中的纵向参与模式。我们采用两步法在n = 1613名用户中发现参与角色:(1)一种单变量聚类方法,分别对应用程序和计划功能的使用情况使用两种无监督k均值聚类算法;(2)一种双变量聚类方法,涉及比较每个成员在应用程序和计划功能单变量聚类中的聚类标签。单变量分析揭示了五个应用程序功能聚类和四个计划功能聚类。双变量分析揭示了这些聚类的五种独特组合,称为参与角色,它们代表了76%的用户。这些参与角色在成员人口统计学和体重减轻方面都有所不同。探索参与角色有助于为个性化计划体验和优化各种数字健康干预措施中的参与度提供策略依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/a109c508106c/behavsci-12-00159-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/fbb1f4e47a04/behavsci-12-00159-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/67f78e6a7888/behavsci-12-00159-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/8087a94b8109/behavsci-12-00159-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/a109c508106c/behavsci-12-00159-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/fbb1f4e47a04/behavsci-12-00159-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/67f78e6a7888/behavsci-12-00159-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/8087a94b8109/behavsci-12-00159-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/9220103/a109c508106c/behavsci-12-00159-g004.jpg

相似文献

[1]
Discovering Engagement Personas in a Digital Diabetes Prevention Program.

Behav Sci (Basel). 2022-5-24

[2]
Combining user-centered design and behavioral theory to enhance health technologies: A personas-based approach for a primary-care based multifactorial falls risk assessment tool.

Int J Med Inform. 2024-6

[3]
Engagement in Digital Health App-Based Prevention Programs Is Associated With Weight Loss Among Adults Age 65.

Front Digit Health. 2022-5-19

[4]
Is More Always Better?: Discovering Incentivized mHealth Intervention Engagement Related to Health Behavior Trends.

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2018-12

[5]
How to Use the Six-Step Digital Ethnography Framework to Develop Buyer Personas: The Case of Fan Fit.

JMIR Form Res. 2022-11-25

[6]
Engagement With a Behavior Change App for Alcohol Reduction: Data Visualization for Longitudinal Observational Study.

J Med Internet Res. 2020-12-11

[7]
User profiles and personas in the design and development of consumer health technologies.

Int J Med Inform. 2011-4-9

[8]
Examining Responsiveness to an Incentive-Based Mobile Health App: Longitudinal Observational Study.

J Med Internet Res. 2020-8-10

[9]
Using Cluster Analysis to Explore Engagement and e-Attainment as Emergent Behavior in Electronic Mental Health.

J Med Internet Res. 2019-11-28

[10]
Internet-Based Lifestyle Intervention to Prevent Type 2 Diabetes Through Healthy Habits: Design and 6-Month Usage Results of Randomized Controlled Trial.

JMIR Diabetes. 2020-8-11

引用本文的文献

[1]
Area deprivation levels of members of a fully digital diabetes prevention program compared to the US population.

Front Endocrinol (Lausanne). 2025-7-16

[2]
Disease Phenotypes in Refractory Musculoskeletal Pain Syndromes Identified by Unsupervised Machine Learning.

ACR Open Rheumatol. 2024-11

[3]
Evaluating a New Digital App-Based Program for Heart Health: Feasibility and Acceptability Pilot Study.

JMIR Form Res. 2024-5-24

[4]
A Digitally Enabled Combined Lifestyle Intervention for Weight Loss: Pilot Study in a Dutch General Population Cohort.

JMIR Form Res. 2024-2-8

[5]
Design and Early Use of the Nationally Implemented Healthier You National Health Service Digital Diabetes Prevention Programme: Mixed Methods Study.

J Med Internet Res. 2023-8-17

[6]
Weight loss and modeled cost savings in a digital diabetes prevention program.

Obes Sci Pract. 2023-3-7

[7]
The Effects of Providing a Connected Scale in an App-Based Digital Health Program: Cross-sectional Examination.

JMIR Mhealth Uhealth. 2023-2-3

[8]
Weight loss in a digital app-based diabetes prevention program powered by artificial intelligence.

Digit Health. 2022-10-9

本文引用的文献

[1]
Trends of self-reported non-adherence among type 2 diabetes medication users in the United States across three years using the self-reported Medication Adherence Reasons Scale.

Nutr Metab Cardiovasc Dis. 2022-1

[2]
Phenotypes of engagement with mobile health technology for heart rhythm monitoring.

JAMIA Open. 2021-6-12

[3]
Patterns of self-monitoring technology use and weight loss in people with overweight or obesity.

Transl Behav Med. 2021-8-13

[4]
5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: .

Diabetes Care. 2021-1

[5]
A Machine Learning Approach to Understanding Patterns of Engagement With Internet-Delivered Mental Health Interventions.

JAMA Netw Open. 2020-7-1

[6]
Digital Health and Engagement-Looking Behind the Measures and Methods.

JAMA Netw Open. 2020-7-1

[7]
Retention Among Participants in the National Diabetes Prevention Program Lifestyle Change Program, 2012-2017.

Diabetes Care. 2020-9

[8]
Barriers and Facilitators of National Diabetes Prevention Program Engagement Among Women of Childbearing Age: A Qualitative Study.

Diabetes Educ. 2020-6

[9]
Participation and weight loss in online National Diabetes Prevention Programs: a comparison of age and gender subgroups.

Transl Behav Med. 2021-3-16

[10]
Adding Financial Incentives to Online Group-Based Behavioral Weight Control: An RCT.

Am J Prev Med. 2020-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索