Suppr超能文献

基于人工智能的数字应用程序糖尿病预防计划中的体重减轻

Weight loss in a digital app-based diabetes prevention program powered by artificial intelligence.

作者信息

Graham Sarah A, Pitter Viveka, Hori Jonathan H, Stein Natalie, Branch OraLee H

机构信息

Lark Health, Mountain View, CA, USA.

出版信息

Digit Health. 2022 Oct 9;8:20552076221130619. doi: 10.1177/20552076221130619. eCollection 2022 Jan-Dec.

Abstract

OBJECTIVE

The National Diabetes Prevention Program (DPP) reduces diabetes incidence and associated medical costs but is typically staffing-intensive, limiting scalability. We evaluated an alternative delivery method with 3933 members of a program powered by conversational Artificial Intelligence (AI) called that has full recognition from the Centers for Disease Control and Prevention (CDC).

METHODS

We compared weight loss maintenance at 12 months between two groups: 1) CDC qualifiers who completed ≥4 educational lessons over 9 months (n  =  191) and 2) non-qualifiers who did not complete the required CDC lessons but provided weigh-ins at 12 months (n  =  223). For a secondary aim, we removed the requirement for a 12-month weight and used logistic regression to investigate predictors of weight nadir in 3148 members.

RESULTS

CDC qualifiers maintained greater weight loss at 12 months than non-qualifiers (M  =  5.3%, SE  =  .8 vs. M  =  3.3%, SE  =  .8;   =  .015), with 40% achieving ≥5%. The weight nadir of 3148 members was 4.2% (SE  =  .1), with 35% achieving ≥5%. Male sex ( = .11;   =  .009), weeks with ≥2 weigh-ins ( = .68;  < .0001), and days with an AI-powered coaching exchange ( = .43;  < .0001) were associated with a greater likelihood of achieving ≥5% weight loss.

CONCLUSIONS

An AI-powered DPP facilitated weight loss and maintenance commensurate with outcomes of other digital and in-person programs not powered by AI. Beyond CDC lesson completion, engaging with AI coaching and frequent weighing increased the likelihood of achieving ≥5% weight loss. An AI-powered program is an effective method to deliver the DPP in a scalable, resource-efficient manner to keep pace with the prediabetes epidemic.

摘要

目的

国家糖尿病预防计划(DPP)可降低糖尿病发病率及相关医疗成本,但通常人员配备要求高,限制了其可扩展性。我们评估了一种替代交付方式,该方式面向一个由名为的对话式人工智能(AI)驱动的项目中的3933名成员,该项目已获得疾病控制与预防中心(CDC)的全面认可。

方法

我们比较了两组在12个月时的体重维持情况:1)在9个月内完成≥4节教育课程的CDC合格者(n = 191)和2)未完成CDC规定课程但在12个月时提供体重测量数据的非合格者(n = 223)。作为次要目标,我们取消了对12个月体重的要求,并使用逻辑回归分析3148名成员体重最低点的预测因素。

结果

CDC合格者在12个月时的体重减轻维持情况优于非合格者(M = 5.3%,SE = 0.8 vs. M = 3.3%,SE = 0.8;P = 0.015),40%的人减重≥5%。3148名成员的体重最低点为4.2%(SE = 0.1),35%的人减重≥5%。男性(P = 0.11;P = 0.009)、每周称重≥2次(P = 0.68;P < 0.0001)以及与人工智能驱动的教练进行交流的天数(P = 0.43;P < 0.0001)与减重≥5%的可能性更大相关。

结论

一个由人工智能驱动的DPP促进了体重减轻和维持,其效果与其他非人工智能驱动的数字和面对面项目相当。除了完成CDC课程外,与人工智能教练互动和频繁称重增加了减重≥5%的可能性。一个由人工智能驱动的项目是一种以可扩展、资源高效的方式实施DPP以跟上糖尿病前期流行趋势的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9cc/9551332/592496640f84/10.1177_20552076221130619-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验