BM-Net:基于卷积神经网络的MobileNet-V3和双线性结构用于全视野图像中的乳腺癌检测

BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images.

作者信息

Huang Jin, Mei Liye, Long Mengping, Liu Yiqiang, Sun Wei, Li Xiaoxiao, Shen Hui, Zhou Fuling, Ruan Xiaolan, Wang Du, Wang Shu, Hu Taobo, Lei Cheng

机构信息

The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.

Department of Pathology, Peking University Cancer Hospital, Beijing 100142, China.

出版信息

Bioengineering (Basel). 2022 Jun 20;9(6):261. doi: 10.3390/bioengineering9060261.

Abstract

Breast cancer is one of the most common types of cancer and is the leading cause of cancer-related death. Diagnosis of breast cancer is based on the evaluation of pathology slides. In the era of digital pathology, these slides can be converted into digital whole slide images (WSIs) for further analysis. However, due to their sheer size, digital WSIs diagnoses are time consuming and challenging. In this study, we present a lightweight architecture that consists of a bilinear structure and MobileNet-V3 network, bilinear MobileNet-V3 (BM-Net), to analyze breast cancer WSIs. We utilized the WSI dataset from the ICIAR2018 Grand Challenge on Breast Cancer Histology Images (BACH) competition, which contains four classes: normal, benign, in situ carcinoma, and invasive carcinoma. We adopted data augmentation techniques to increase diversity and utilized focal loss to remove class imbalance. We achieved high performance, with 0.88 accuracy in patch classification and an average 0.71 score, which surpassed state-of-the-art models. Our BM-Net shows great potential in detecting cancer in WSIs and is a promising clinical tool.

摘要

乳腺癌是最常见的癌症类型之一,也是癌症相关死亡的主要原因。乳腺癌的诊断基于病理切片评估。在数字病理学时代,这些切片可转换为数字全切片图像(WSIs)以进行进一步分析。然而,由于其巨大的尺寸,数字WSIs诊断既耗时又具有挑战性。在本研究中,我们提出了一种轻量级架构,其由双线性结构和MobileNet-V3网络组成,即双线性MobileNet-V3(BM-Net),用于分析乳腺癌WSIs。我们使用了来自ICIAR2018乳腺癌组织学图像大挑战(BACH)竞赛的WSI数据集,该数据集包含四个类别:正常、良性、原位癌和浸润性癌。我们采用数据增强技术来增加多样性,并利用焦点损失来消除类别不平衡。我们取得了高性能,在补丁分类中准确率达到0.88,平均分数为0.71,超过了现有最先进的模型。我们的BM-Net在检测WSIs中的癌症方面显示出巨大潜力,是一种很有前景的临床工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd0c/9220285/30879ef7f376/bioengineering-09-00261-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索