Suppr超能文献

双线性 CNN 和软注意力的肺癌组织病理分割。

Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention.

机构信息

School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China.

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

出版信息

Biomed Res Int. 2022 Jul 7;2022:7966553. doi: 10.1155/2022/7966553. eCollection 2022.

Abstract

Automatic tissue segmentation in whole-slide images (WSIs) is a critical task in hematoxylin and eosin- (H&E-) stained histopathological images for accurate diagnosis and risk stratification of lung cancer. Patch classification and stitching the classification results can fast conduct tissue segmentation of WSIs. However, due to the tumour heterogeneity, large intraclass variability and small interclass variability make the classification task challenging. In this paper, we propose a novel bilinear convolutional neural network- (Bilinear-CNN-) based model with a bilinear convolutional module and a soft attention module to tackle this problem. This method investigates the intraclass semantic correspondence and focuses on the more distinguishable features that make feature output variations relatively large between interclass. The performance of the Bilinear-CNN-based model is compared with other state-of-the-art methods on the histopathological classification dataset, which consists of 107.7 k patches of lung cancer. We further evaluate our proposed algorithm on an additional dataset from colorectal cancer. Extensive experiments show that the performance of our proposed method is superior to that of previous state-of-the-art ones and the interpretability of our proposed method is demonstrated by Grad-CAM.

摘要

全切片图像(WSI)中的自动组织分割是苏木精和伊红(H&E)染色组织病理学图像中用于肺癌准确诊断和风险分层的关键任务。通过分类和拼接分类结果可以快速对 WSI 进行组织分割。然而,由于肿瘤异质性、大的类内可变性和小的类间可变性,使得分类任务具有挑战性。在本文中,我们提出了一种新的基于双线性卷积神经网络(Bilinear-CNN)的模型,该模型具有双线性卷积模块和软注意力模块,可以解决这个问题。该方法研究了类内语义对应关系,并专注于更具区分性的特征,使类间特征输出变化相对较大。在由 107700 个肺癌斑块组成的组织病理学分类数据集上,我们将基于 Bilinear-CNN 的模型的性能与其他最先进的方法进行了比较。我们还在来自结直肠癌的附加数据集上评估了我们提出的算法。大量实验表明,我们提出的方法的性能优于以前的最先进方法,并且我们提出的方法的可解释性通过 Grad-CAM 得到了证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f1/9283032/4d98f9bc41b1/BMRI2022-7966553.001.jpg

相似文献

1
Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention.
Biomed Res Int. 2022 Jul 7;2022:7966553. doi: 10.1155/2022/7966553. eCollection 2022.
2
Histopathological image classification with bilinear convolutional neural networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4050-4053. doi: 10.1109/EMBC.2017.8037745.
3
5
DLNLF-net: Denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma.
Comput Methods Programs Biomed. 2022 Dec;227:107201. doi: 10.1016/j.cmpb.2022.107201. Epub 2022 Oct 25.
9
Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping.
Med Image Anal. 2020 Feb;60:101628. doi: 10.1016/j.media.2019.101628. Epub 2019 Dec 12.
10
ML3CNet: Non-local means-assisted automatic framework for lung cancer subtypes classification using histopathological images.
Comput Methods Programs Biomed. 2024 Jun;251:108207. doi: 10.1016/j.cmpb.2024.108207. Epub 2024 May 4.

引用本文的文献

1
Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions.
Mayo Clin Proc Digit Health. 2025 Jul 18;3(3):100253. doi: 10.1016/j.mcpdig.2025.100253. eCollection 2025 Sep.

本文引用的文献

3
Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images-The ACDC@LungHP Challenge 2019.
IEEE J Biomed Health Inform. 2021 Feb;25(2):429-440. doi: 10.1109/JBHI.2020.3039741. Epub 2021 Feb 5.
4
A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study.
Lancet Digit Health. 2020 Nov;2(11):e594-e606. doi: 10.1016/s2589-7500(20)30225-9. Epub 2020 Oct 19.
5
Fine-Grained Breast Cancer Classification With Bilinear Convolutional Neural Networks (BCNNs).
Front Genet. 2020 Sep 4;11:547327. doi: 10.3389/fgene.2020.547327. eCollection 2020.
8
Automated gleason grading on prostate biopsy slides by statistical representations of homology profile.
Comput Methods Programs Biomed. 2020 Oct;194:105528. doi: 10.1016/j.cmpb.2020.105528. Epub 2020 May 26.
9
Artificial Intelligence in Lung Cancer Pathology Image Analysis.
Cancers (Basel). 2019 Oct 28;11(11):1673. doi: 10.3390/cancers11111673.
10
Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.
Med Image Anal. 2019 Dec;58:101563. doi: 10.1016/j.media.2019.101563. Epub 2019 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验