Suppr超能文献

基于小数据集的深度学习模型在乳房X光图像分类中的性能评估

Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset.

作者信息

Adedigba Adeyinka P, Adeshina Steve A, Aibinu Abiodun M

机构信息

Department of Mechatronics Engineering, Federal University of Technology, Minna 920211, Nigeria.

Department of Computer Engineering, Nile University of Nigeria, Abuja 900001, Nigeria.

出版信息

Bioengineering (Basel). 2022 Apr 6;9(4):161. doi: 10.3390/bioengineering9040161.

Abstract

Cancer is the second leading cause of death globally, and breast cancer (BC) is the second most reported cancer. Although the incidence rate is reducing in developed countries, the reverse is the case in low- and middle-income countries. Early detection has been found to contain cancer growth, prevent metastasis, ease treatment, and reduce mortality by 25%. The digital mammogram is one of the most common, cheapest, and most effective BC screening techniques capable of early detection of up to 90% BC incidence. However, the mammogram is one of the most difficult medical images to analyze. In this paper, we present a method of training a deep learning model for BC diagnosis. We developed a discriminative fine-tuning method which dynamically assigns different learning rates to each layer of the deep CNN. In addition, the model was trained using mixed-precision training to ease the computational demand of training deep learning models. Lastly, we present data augmentation methods for mammograms. The discriminative fine-tuning algorithm enables rapid convergence of the model loss; hence, the models were trained to attain their best performance within 50 epochs. Comparing the results, DenseNet achieved the highest accuracy of 0.998, while AlexNet obtained 0.988.

摘要

癌症是全球第二大致死原因,而乳腺癌(BC)是报告病例数第二多的癌症。尽管发达国家的发病率在下降,但在低收入和中等收入国家情况却相反。早期发现已被证明可以抑制癌症生长、防止转移、简化治疗并降低25%的死亡率。数字化乳腺X线摄影是最常见、最便宜且最有效的乳腺癌筛查技术之一,能够早期检测出高达90%的乳腺癌病例。然而,乳腺X线摄影图像是最难分析的医学图像之一。在本文中,我们提出了一种用于乳腺癌诊断的深度学习模型训练方法。我们开发了一种判别式微调方法,该方法为深度卷积神经网络(CNN)的每一层动态分配不同的学习率。此外,该模型使用混合精度训练进行训练,以减轻训练深度学习模型的计算需求。最后,我们提出了针对乳腺X线摄影图像的数据增强方法。判别式微调算法能够使模型损失快速收敛;因此,这些模型在50个轮次内就被训练到达到最佳性能。比较结果发现,DenseNet达到了最高准确率0.998,而AlexNet的准确率为0.988。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b50/9027584/944e0cad6fd9/bioengineering-09-00161-g001.jpg

相似文献

1
Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset.
Bioengineering (Basel). 2022 Apr 6;9(4):161. doi: 10.3390/bioengineering9040161.
2
Optimal hyperparameter selection of deep learning models for COVID-19 chest X-ray classification.
Intell Based Med. 2021;5:100034. doi: 10.1016/j.ibmed.2021.100034. Epub 2021 Apr 21.
3
Deep Learning Pre-training Strategy for Mammogram Image Classification: an Evaluation Study.
J Digit Imaging. 2020 Oct;33(5):1257-1265. doi: 10.1007/s10278-020-00369-3.
4
A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica.
Med Biol Eng Comput. 2022 Apr;60(4):1159-1175. doi: 10.1007/s11517-021-02497-6. Epub 2022 Mar 3.
7
A Comprehensive Performance Analysis of Transfer Learning Optimization in Visual Field Defect Classification.
Diagnostics (Basel). 2022 May 18;12(5):1258. doi: 10.3390/diagnostics12051258.
8
Feature fusion Siamese network for breast cancer detection comparing current and prior mammograms.
Med Phys. 2022 Jun;49(6):3654-3669. doi: 10.1002/mp.15598. Epub 2022 Apr 22.
9
An Enhanced LightGBM-Based Breast Cancer Detection Technique Using Mammography Images.
Diagnostics (Basel). 2024 Jan 22;14(2):227. doi: 10.3390/diagnostics14020227.
10
Automated Breast Cancer Detection Models Based on Transfer Learning.
Sensors (Basel). 2022 Jan 24;22(3):876. doi: 10.3390/s22030876.

引用本文的文献

3
Automated Caries Detection Under Dental Restorations and Braces Using Deep Learning.
Bioengineering (Basel). 2025 May 15;12(5):533. doi: 10.3390/bioengineering12050533.
4
Deep Learning-Enhanced Diagnosis of Sow Pregnancy Through Low-Frequency Ultrasound Imaging.
Animals (Basel). 2025 Jan 23;15(3):318. doi: 10.3390/ani15030318.
5
Detection of Masses in Mammogram Images Based on the Enhanced RetinaNet Network With INbreast Dataset.
J Multidiscip Healthc. 2025 Feb 7;18:675-695. doi: 10.2147/JMDH.S493873. eCollection 2025.
6
Deep joint learning diagnosis of Alzheimer's disease based on multimodal feature fusion.
BioData Min. 2024 Nov 5;17(1):48. doi: 10.1186/s13040-024-00395-9.
7
How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications.
Bioengineering (Basel). 2023 Dec 18;10(12):1435. doi: 10.3390/bioengineering10121435.
8
Enhancement Technique Based on the Breast Density Level for Mammogram for Computer-Aided Diagnosis.
Bioengineering (Basel). 2023 Jan 23;10(2):153. doi: 10.3390/bioengineering10020153.
9
A High-Accuracy Detection System: Based on Transfer Learning for Apical Lesions on Periapical Radiograph.
Bioengineering (Basel). 2022 Dec 6;9(12):777. doi: 10.3390/bioengineering9120777.
10
Bag of Tricks for Improving Deep Learning Performance on Multimodal Image Classification.
Bioengineering (Basel). 2022 Jul 13;9(7):312. doi: 10.3390/bioengineering9070312.

本文引用的文献

2
Deep Learning for Breast Cancer Diagnosis from Mammograms-A Comparative Study.
J Imaging. 2019 Mar 13;5(3):37. doi: 10.3390/jimaging5030037.
3
Deep adversarial domain adaptation for breast cancer screening from mammograms.
Med Image Anal. 2021 Oct;73:102147. doi: 10.1016/j.media.2021.102147. Epub 2021 Jun 30.
4
Optimal hyperparameter selection of deep learning models for COVID-19 chest X-ray classification.
Intell Based Med. 2021;5:100034. doi: 10.1016/j.ibmed.2021.100034. Epub 2021 Apr 21.
5
Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms.
Comput Methods Programs Biomed. 2020 Nov;196:105584. doi: 10.1016/j.cmpb.2020.105584. Epub 2020 Jun 4.
6
Melanoma detection using adversarial training and deep transfer learning.
Phys Med Biol. 2020 Jul 6;65(13):135005. doi: 10.1088/1361-6560/ab86d3.
7
Deep Learning to Improve Breast Cancer Detection on Screening Mammography.
Sci Rep. 2019 Aug 29;9(1):12495. doi: 10.1038/s41598-019-48995-4.
8
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:4761-4772. doi: 10.1109/CVPR.2017.506. Epub 2017 Nov 9.
9
A Novel Enhanced Gray Scale Adaptive Method for Prediction of Breast Cancer.
J Med Syst. 2018 Oct 3;42(11):221. doi: 10.1007/s10916-018-1082-7.
10
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验