Luiz-Santos Noe, Prado-Ramírez Rogelio, Camacho-Ruíz Rosa María, Guatemala-Morales Guadalupe María, Arriola-Guevara Enrique, Moreno-Vilet Lorena
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tecnología Alimentaria, Autopista Mty-Aeropuerto, Vía de la Innovación 404, Parque PIIT, Apodaca 66628, Mexico.
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tecnología Alimentaria and Biotecnología Industrial, Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico.
Membranes (Basel). 2022 May 31;12(6):575. doi: 10.3390/membranes12060575.
The objective of this work was to evaluate the effect of operating conditions and fructans size distribution on the tight Ultrafiltration process for agave fructans fractionation. A mathematical model of limiting mass flux transfer was used to represent the profile of concentrations over time at the outlet of a pilot scale ultrafiltration system. First, a Box-Behnken experimental design was performed for the optimization of the parameters that determine the operating conditions in their respective ranges: temperature, 30−60 °C; transmembrane pressure (TMP), 1−5 bar and feed concentration, 50−150 kg∙m−3, on the separation factor (SF) and permeate flux. Then, the validation of the model for different fructans size distribution was carried out. The results showed that for SF, the quadratic terms of temperature, TMP and feed concentration were the most significant factors. Statistical analysis revealed that the temperature-concentration interaction has a significant effect (p < 0.005) and that the optimal conditions were: 46.81 °C, 3.27 bar and 85.70 kg∙m−3. The optimized parameters were used to validate the hydrodynamic model; the adjustments conclude that the model, although simplified, is capable of correctly reproducing the experimental data of agave fructans fractionation by a tight ultrafiltration pilot unit. The fractionation process is favored at higher proportions of FOS:Fc in native agave fructans.
这项工作的目的是评估操作条件和果聚糖尺寸分布对龙舌兰果聚糖分级紧密超滤过程的影响。采用极限质量通量传递的数学模型来表示中试规模超滤系统出口处浓度随时间的变化曲线。首先,进行了Box-Behnken实验设计,以优化在各自范围内决定操作条件的参数:温度为30−60 °C;跨膜压力(TMP)为1−5 bar;进料浓度为50−150 kg∙m−3,考察其对分离因子(SF)和渗透通量的影响。然后,对不同果聚糖尺寸分布的模型进行了验证。结果表明,对于分离因子而言,温度、跨膜压力和进料浓度的二次项是最显著的因素。统计分析表明,温度-浓度相互作用具有显著影响(p < 0.005),最佳条件为:46.81 °C、3.27 bar和85.70 kg∙m−3。使用优化后的参数对流体动力学模型进行验证;调整结果表明,该模型虽然简化,但能够正确再现龙舌兰果聚糖分级紧密超滤中试装置的实验数据。在天然龙舌兰果聚糖中,较高比例的低聚果糖:蔗果三糖有利于分级过程。