Suppr超能文献

基于代谢组学“大数据”衍生肿瘤条形码驱动的结直肠癌协同药物组合的发现

Discovery of Synergistic Drug Combinations for Colorectal Cancer Driven by Tumor Barcode Derived from Metabolomics "Big Data".

作者信息

Lv Bo, Xu Ruijie, Xing Xinrui, Liao Chuyao, Zhang Zunjian, Zhang Pei, Xu Fengguo

机构信息

Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.

State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.

出版信息

Metabolites. 2022 May 30;12(6):494. doi: 10.3390/metabo12060494.

Abstract

The accumulation of cancer metabolomics data in the past decade provides exceptional opportunities for deeper investigations into cancer metabolism. However, integrating a large amount of heterogeneous metabolomics data to draw a full picture of the metabolic reprogramming and to discover oncometabolites of certain cancers remains challenging. In this study, a tumor barcode constructed based upon existing metabolomics "big data" using the Bayesian vote-counting method is proposed to identify oncometabolites in colorectal cancer (CRC). Specifically, a panel of oncometabolites of CRC was generated from 39 clinical studies with 3202 blood samples (1332 CRC vs. 1870 controls) and 990 tissue samples (495 CRC vs. 495 controls). Next, an oncometabolite-protein network was constructed by combining the tumor barcode and its involved proteins/enzymes. The effect of anti-cancer drugs or drug combinations was then mapped into this network by the random walk with restart process. Utilizing this network, potential Irinotecan (CPT-11)-sensitizing agents for CRC treatment were discovered by random forest and Xgboost. Finally, a compound named MK-2206 was highlighted and its synergy with CPT-11 was validated on two CRC cell lines. To summarize, we demonstrate in the present study that the metabolomics "big data"-based tumor barcodes and the subsequent network analyses are potentially useful for drug combination discovery or drug repositioning.

摘要

在过去十年中,癌症代谢组学数据的积累为深入研究癌症代谢提供了绝佳机会。然而,整合大量异质的代谢组学数据以全面了解代谢重编程并发现某些癌症的肿瘤代谢物仍然具有挑战性。在本研究中,提出了一种基于现有代谢组学“大数据”使用贝叶斯投票计数法构建的肿瘤条形码,以识别结直肠癌(CRC)中的肿瘤代谢物。具体而言,从39项临床研究中生成了一组CRC肿瘤代谢物,这些研究包含3202份血液样本(1332例CRC患者与1870例对照)和990份组织样本(495例CRC患者与495例对照)。接下来,通过结合肿瘤条形码及其涉及的蛋白质/酶构建了肿瘤代谢物-蛋白质网络。然后通过带重启的随机游走过程将抗癌药物或药物组合的作用映射到该网络中。利用这个网络,通过随机森林和Xgboost发现了潜在的用于CRC治疗的伊立替康(CPT-11)增敏剂。最后,突出显示了一种名为MK-2206的化合物,并在两种CRC细胞系上验证了其与CPT-11的协同作用。总之,我们在本研究中证明,基于代谢组学“大数据”的肿瘤条形码及随后的网络分析对于药物组合发现或药物重新定位可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ec/9227693/ade270140bfc/metabolites-12-00494-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验