Suppr超能文献

在密集的个体 fMRI 数据集上对人类连接组计划任务进行大脑解码。

Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset.

机构信息

Université de Montréal, Montréal, QC, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.

Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.

出版信息

Neuroimage. 2023 Dec 1;283:120395. doi: 10.1016/j.neuroimage.2023.120395. Epub 2023 Oct 12.

Abstract

Brain decoding aims to infer cognitive states from patterns of brain activity. Substantial inter-individual variations in functional brain organization challenge accurate decoding performed at the group level. In this paper, we tested whether accurate brain decoding models can be trained entirely at the individual level. We trained several classifiers on a dense individual functional magnetic resonance imaging (fMRI) dataset for which six participants completed the entire Human Connectome Project (HCP) task battery >13 times over ten separate fMRI sessions. We evaluated nine decoding methods, from Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP) to Graph Convolutional Neural Networks (GCN). All decoders were trained to classify single fMRI volumes into 21 experimental conditions simultaneously, using ∼7 h of fMRI data per participant. The best prediction accuracies were achieved with GCN and MLP models, whose performance (57-67 % accuracy) approached state-of-the-art accuracy (76 %) with models trained at the group level on >1 K hours of data from the original HCP sample. Our SVM model also performed very well (54-62 % accuracy). Feature importance maps derived from MLP -our best-performing model- revealed informative features in regions relevant to particular cognitive domains, notably in the motor cortex. We also observed that inter-subject classification achieved substantially lower accuracy than subject-specific models, indicating that our decoders learned individual-specific features. This work demonstrates that densely-sampled neuroimaging datasets can be used to train accurate brain decoding models at the individual level. We expect this work to become a useful benchmark for techniques that improve model generalization across multiple subjects and acquisition conditions.

摘要

大脑解码旨在根据大脑活动模式推断认知状态。功能大脑组织在个体间存在显著差异,这对在群体水平上进行准确解码提出了挑战。在本文中,我们测试了是否可以完全在个体水平上训练准确的大脑解码模型。我们在一个密集的个体功能磁共振成像 (fMRI) 数据集上训练了几个分类器,该数据集有六名参与者在十次独立的 fMRI 会话中完成了整个人类连接组计划 (HCP) 任务电池超过 13 次。我们评估了九种解码方法,从支持向量机 (SVM) 和多层感知机 (MLP) 到图卷积神经网络 (GCN)。所有解码器都使用每个参与者约 7 小时的 fMRI 数据进行训练,将单个 fMRI 体积同时分类为 21 个实验条件。使用 GCN 和 MLP 模型实现了最佳预测精度,其性能(57-67%的准确性)接近使用来自原始 HCP 样本的>1K 小时数据在群体水平上训练的最先进模型(76%)的准确性。我们的 SVM 模型也表现得非常好(54-62%的准确性)。从 MLP(我们表现最好的模型)中得出的特征重要性图揭示了与特定认知领域相关的区域中的信息性特征,特别是在运动皮层中。我们还观察到,与特定个体的模型相比,个体间分类的准确性要低得多,这表明我们的解码器学习了个体特有的特征。这项工作证明了密集采样的神经影像学数据集可用于在个体水平上训练准确的大脑解码模型。我们期望这项工作成为提高跨多个个体和采集条件的模型泛化能力的技术的有用基准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验