Suppr超能文献

大规模功能磁共振成像数据集里个体自回归模型的一个基准。

A benchmark of individual auto-regressive models in a massive fMRI dataset.

作者信息

Paugam François, Pinsard Basile, Lajoie Guillaume, Bellec Pierre

机构信息

University of Montréal, Montréal, Canada.

Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.

出版信息

Imaging Neurosci (Camb). 2024 Jul 15;2. doi: 10.1162/imag_a_00228. eCollection 2024.

Abstract

Dense functional magnetic resonance imaging datasets open new avenues to create auto-regressive models of brain activity. Individual idiosyncrasies are obscured by group models, but can be captured by purely individual models given sufficient amounts of training data. In this study, we compared several deep and shallow individual models on the temporal auto-regression of BOLD time-series recorded during a natural video-watching task. The best performing models were then analyzed in terms of their data requirements and scaling, subject specificity, and the space-time structure of their predicted dynamics. We found the Chebnets, a type of graph convolutional neural network, to be best suited for temporal BOLD auto-regression, closely followed by linear models. Chebnets demonstrated an increase in performance with increasing amounts of data, with no complete saturation at 9 h of training data. Good generalization to other kinds of video stimuli and to resting-state data marked the Chebnets' ability to capture intrinsic brain dynamics rather than only stimulus-specific autocorrelation patterns. Significant subject specificity was found at short prediction time lags. The Chebnets were found to capture lower frequencies at longer prediction time lags, and the spatial correlations in predicted dynamics were found to match traditional functional connectivity networks. Overall, these results demonstrate that large individual functional magnetic resonance imaging (fMRI) datasets can be used to efficiently train purely individual auto-regressive models of brain activity, and that massive amounts of individual data are required to do so. The excellent performance of the Chebnets likely reflects their ability to combine spatial and temporal interactions on large time scales at a low complexity cost. The non-linearities of the models did not appear as a key advantage. In fact, surprisingly, linear versions of the Chebnets appeared to outperform the original non-linear ones. Individual temporal auto-regressive models have the potential to improve the predictability of the BOLD signal. This study is based on a massive, publicly-available dataset, which can serve for future benchmarks of individual auto-regressive modeling.

摘要

密集功能磁共振成像数据集为创建大脑活动的自回归模型开辟了新途径。个体特质在群体模型中被掩盖,但在有足够训练数据的情况下,可被纯个体模型捕捉。在本研究中,我们比较了几种深度和浅层个体模型对自然视频观看任务中记录的BOLD时间序列的时间自回归情况。然后从数据需求和扩展性、受试者特异性以及预测动态的时空结构方面分析了表现最佳的模型。我们发现Chebnets(一种图卷积神经网络)最适合用于BOLD时间自回归,其次是线性模型。Chebnets随着数据量增加性能提升,在9小时训练数据时未完全饱和。对其他类型视频刺激和静息态数据的良好泛化能力标志着Chebnets能够捕捉内在大脑动态,而非仅捕捉特定刺激的自相关模式。在短预测时间滞后发现了显著的受试者特异性。发现Chebnets在较长预测时间滞后捕捉较低频率,且预测动态中的空间相关性与传统功能连接网络匹配。总体而言,这些结果表明,大型个体功能磁共振成像(fMRI)数据集可用于有效训练大脑活动的纯个体自回归模型,且需要大量个体数据才能做到。Chebnets的出色性能可能反映了它们以低复杂度成本在大时间尺度上结合时空相互作用的能力。模型的非线性并未表现为关键优势。事实上,令人惊讶的是,Chebnets的线性版本似乎优于原始非线性版本。个体时间自回归模型有潜力提高BOLD信号的可预测性。本研究基于一个大规模的公开可用数据集,可用于个体自回归建模的未来基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0031/12272179/bf453522f0df/imag_a_00228_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验