Kiyotake Emi A, Cheng Michael E, Thomas Emily E, Detamore Michael S
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Biomolecules. 2022 Jun 17;12(6):846. doi: 10.3390/biom12060846.
The potential chondroinductivity from cartilage matrix makes it promising for cartilage repair; however, cartilage matrix-based hydrogels developed thus far have failed to match the mechanical performance of native cartilage or be bioprinted without adding polymers for reinforcement. There is a need for cartilage matrix-based hydrogels with robust mechanical performance and paste-like precursor rheology for bioprinting/enhanced surgical placement. In the current study, our goals were to increase hydrogel stiffness and develop the paste-like precursor/printability of our methacryl-modified solubilized and devitalized cartilage (MeSDVC) hydrogels. We compared two methacryloylating reagents, methacrylic anhydride (MA) and glycidyl methacrylate (GM), and varied the molar excess (ME) of MA from 2 to 20. The MA-modified MeSDVCs had greater methacryloylation than GM-modified MeSDVC (20 ME). While GM and most of the MA hydrogel precursors exhibited paste-like rheology, the 2 ME MA and GM MeSDVCs had the best printability (i.e., shape fidelity, filament collapse). After crosslinking, the 2 ME MA MeSDVC had the highest stiffness (1.55 ± 0.23 MPa), approaching the modulus of native cartilage, and supported the viability/adhesion of seeded cells for 15 days. Overall, the MA (2 ME) improved methacryloylation, hydrogel stiffness, and printability, resulting in a stand-alone MeSDVC printable biomaterial. The MeSDVC has potential as a future bioink and has future clinical relevance for cartilage repair.
软骨基质潜在的软骨诱导能力使其在软骨修复方面颇具前景;然而,迄今为止开发的基于软骨基质的水凝胶未能达到天然软骨的机械性能,也无法在不添加聚合物进行增强的情况下进行生物打印。需要具有强大机械性能和类似糊状物前体流变学的基于软骨基质的水凝胶用于生物打印/增强手术植入。在当前研究中,我们的目标是提高水凝胶的硬度,并改善我们的甲基丙烯酸修饰的溶解和失活软骨(MeSDVC)水凝胶的类似糊状物前体/可打印性。我们比较了两种甲基丙烯酰化试剂,甲基丙烯酸酐(MA)和甲基丙烯酸缩水甘油酯(GM),并将MA的摩尔过量(ME)从2变化到20。MA修饰的MeSDVCs比GM修饰的MeSDVC(20 ME)具有更高的甲基丙烯酰化程度。虽然GM和大多数MA水凝胶前体表现出类似糊状物的流变学,但2 ME的MA和GM MeSDVCs具有最佳的可打印性(即形状保真度、细丝塌陷)。交联后,2 ME的MA MeSDVC具有最高的硬度(1.55±0.23 MPa),接近天然软骨的模量,并在15天内支持接种细胞的活力/粘附。总体而言,MA(2 ME)改善了甲基丙烯酰化、水凝胶硬度和可打印性,产生了一种独立的可打印的MeSDVC生物材料。MeSDVC有潜力作为未来的生物墨水,对软骨修复具有未来的临床意义。