Suppr超能文献

极端嗜盐古菌中钾到相容性溶质的渗透调节物开关 2020YC7。

The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea 2020YC7.

机构信息

CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Genes (Basel). 2022 May 24;13(6):939. doi: 10.3390/genes13060939.

Abstract

The main osmoadaptive mechanisms of extremely halophilic archaea include the "salt-in" strategy and the "compatible solutes" strategy. Here we report the osmoadaptive mechanism of an extremely halophilic archaea 2020YC7, isolated from a high salt environment sample. Genomic data revealed that strain 2020YC7 harbors genes , , for K uptake, for K output, for trehalose production from polysaccharide, and betaine/carnitine/choline transporter family gene for glycine betaine uptake. Strain 2020YC7 could accumulate 8.17 to 28.67 μmol/mg protein K in a defined medium, with its content increasing along with the increasing salinity from 100 to 200 g/L. When exogenous glycine betaine was added, glycine betaine functioned as the primary osmotic solute between 200 and 250 g/L NaCl, which was accumulated up to 15.27 mg/mg protein in 2020YC7 cells. RT-qPCR results completely confirmed these results. Notably, the concentrations of intracellular trehalose decreased from 5.26 to 2.61 mg/mg protein as the NaCl increased from 50 to 250 g/L. In combination with this result, the transcript level of gene , which catalyzes the production of trehalose from polysaccharide, was significantly up-regulated at 50-100 g/L NaCl. Therefore, trehalose does not act as an osmotic solute at high NaCl concentrations (more than 100 g/L) but at relatively low NaCl concentrations (50-100 g/L). And we propose that the degradation of cell wall polysaccharide, as a source of trehalose in a low-salt environment, may be one of the reasons for the obligate halophilic characteristics of strain 2020YC7.

摘要

极端嗜盐古菌的主要渗透适应机制包括“盐进”策略和“相容溶质”策略。本研究报告了一株极端嗜盐古菌 2020YC7 的渗透适应机制,该菌分离自高盐环境样品。基因组数据分析表明,该菌株 2020YC7 含有 K+摄取基因、K+外排基因、海藻糖合成基因、甜菜碱/肉碱/胆碱转运家族基因。在限定培养基中,2020YC7 菌株可积累 8.17 至 28.67 μmol/mg 蛋白 K+,其含量随盐度从 100 至 200 g/L 增加而增加。当添加外源甘氨酸甜菜碱时,甘氨酸甜菜碱在 200 至 250 g/L NaCl 之间作为主要的渗透溶质,在 2020YC7 细胞中积累至 15.27 mg/mg 蛋白。RT-qPCR 结果完全证实了这些结果。值得注意的是,随着 NaCl 浓度从 50 至 250 g/L 增加,细胞内海藻糖的浓度从 5.26 至 2.61 mg/mg 蛋白降低。结合这一结果,催化多糖生成海藻糖的基因的转录水平在 50-100 g/L NaCl 时显著上调。因此,海藻糖在高 NaCl 浓度(大于 100 g/L)下不作为渗透溶质,而在相对低的 NaCl 浓度(50-100 g/L)下作为渗透溶质。我们提出,细胞壁多糖的降解作为低盐环境中海藻糖的来源,可能是 2020YC7 菌株必须嗜盐的原因之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a62/9222508/49d973fa75e8/genes-13-00939-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验