Suppr超能文献

人类 I 型精氨酸酶特异性决定因素的新见解:产生一种仅以胍丁胺为底物的活性突变体。

New Insights into the Determinants of Specificity in Human Type I Arginase: Generation of a Mutant That Is Only Active with Agmatine as Substrate.

机构信息

Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile.

Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile.

出版信息

Int J Mol Sci. 2022 Jun 9;23(12):6438. doi: 10.3390/ijms23126438.

Abstract

Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. This enzyme has several analogies with agmatinase, which catalyzes the hydrolysis of agmatine into putrescine and urea. However, this contrasts with the highlighted specificity that each one presents for their respective substrate. A comparison of available crystal structures for arginases reveals an important difference in the extension of two loops located in the entrance of the active site. The first, denominated (I129-L140) contains the residues that interact with the alpha carboxyl group or arginine of arginase, and the (D181-P184) contains the residues that interact with the alpha amino group of arginine. In this work, to determine the importance of these loops in the specificity of arginase, single, double, and triple arginase mutants in these loops were constructed, as well as chimeras between type I human arginase and agmatinase. In previous studies, the substitution of N130D in arginase (in ) generated a species capable of hydrolyzing arginine and agmatine. Now, the specificity of arginase is completely altered, generating a chimeric species that is only active with agmatine as a substrate, by substituting I129T, N130Y, and T131A together with the elimination of residues P132, L133, and T134. In addition, Quantum Mechanic/Molecular Mechanic (QM/MM) calculations were carried out to study the accommodation of the substrates in in the active site of this chimera. With these results it is concluded that this loop is decisive to discriminate the type of substrate susceptible to be hydrolyzed by arginase. Evidence was also obtained to define the as a structural determinant for substrate affinity. Concretely, the double mutation D181T and V182E generate an enzyme with an essentially unaltered value, but with a significantly increased value for arginine and a significant decrease in affinity for its product ornithine.

摘要

精氨酸酶催化 L-精氨酸水解为 L-鸟氨酸和尿素。该酶与胍氨酸酶有几个相似之处,胍氨酸酶催化胍氨酸水解为腐胺和尿素。然而,这与各自底物所呈现的突出特异性形成对比。对可用的精氨酸酶晶体结构进行比较,揭示了活性部位入口处两个环的延伸存在重要差异。第一个环称为(I129-L140),包含与精氨酸酶的α-羧基或精氨酸相互作用的残基,而第二个环称为(D181-P184),包含与精氨酸的α-氨基相互作用的残基。在这项工作中,为了确定这些环在精氨酸酶特异性中的重要性,构建了这些环中单、双和三突变的精氨酸酶突变体,以及 I 型人精氨酸酶和胍氨酸酶之间的嵌合体。在以前的研究中,精氨酸酶()中 N130D 的取代产生了一种能够水解精氨酸和胍氨酸的物种。现在,精氨酸酶的特异性完全改变,通过取代 I129T、N130Y 和 T131A 并消除残基 P132、L133 和 T134,生成一种仅以胍氨酸为底物具有活性的嵌合物种。此外,还进行了量子力学/分子力学(QM/MM)计算,以研究该嵌合体在其活性部位中底物的容纳情况。根据这些结果得出结论,该环对于区分易被精氨酸酶水解的底物类型具有决定性作用。还获得了证据来定义作为底物亲和力结构决定因素的。具体而言,双突变 D181T 和 V182E 产生一种酶,其值基本不变,但对精氨酸的 值显著增加,对其产物鸟氨酸的亲和力显著降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec25/9224512/a839337f4fa7/ijms-23-06438-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验