Suppr超能文献

L-精氨酸与肝脏精氨酸酶的结合需要质子转移至门户残基His141,并使胍基与二锰(II,II)中心配位。

L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.

作者信息

Khangulov S V, Sossong T M, Ash D E, Dismukes G C

机构信息

Department of Chemistry, Henry H. Hoyt Laboratory, Princeton University, New Jersey 08544, USA.

出版信息

Biochemistry. 1998 Jun 9;37(23):8539-50. doi: 10.1021/bi972874c.

Abstract

Rat liver arginase contains a dimanganese(II,II) center per subunit that is required for catalytic hydrolysis of l-arginine to form urea and l-ornithine. A recent crystallographic study has shown that the Mn2 center consists of two coordinatively inequivalent manganese(II) ions, MnA and MnB, bridged by a water (hydroxide) molecule and two aspartate residues [Kanyo et al. (1996) Nature 383, 554-557]. A conserved residue, His141, is located near the proposed substrate binding region at 4.2 A from the bridging solvent molecule. The present EPR studies reveal that there is no essential alteration of the Mn2 site upon mutation of His141 to an Asn residue, which lacks a potential acid/base residue, while the catalytic activity of the mutant enzyme is 10 times lower vs wild-type enzyme. The binding affinity of l-lysine, l-arginine (substrate), and Nomega-OH-l-arginine (type 2 binders) increases inversely with the pKa of the side chain. Binding of l-lysine is more than 10 times weaker, and the substrate Michaelis constant (Km) is >6-fold greater (weaker binding) in the His141Asn mutant than in wild-type arginase. L-Lysine and Nomega-OH-L-arginine, type 2 binders, induce extensive loss of the EPR intensity, suggesting direct coordination to the Mn2 center. From these data and the pH dependence of type 2 binders, we conclude that His141 functions as the base for deprotonation of the side-chain amino group of L-lysine and the substrate guanidinium group, -NH-C(NH2)2+ and that the unprotonated side chain of these amino acids is responsible for binding to the active site. A different class of inhibitors (type 1), including L-isoleucine, L-ornithine, and L-citrulline, suppresses enzymatic activity, producing only minor change in the zero-field splitting of the Mn2 EPR signal and no change in the EPR intensity, suggestive of minimal conformational transformation. We propose that type 1 alpha-amino acid inhibitors do not bind directly to either Mn ion, but interact with the recognition site on arginase for the alpha-aminocarboxylate groups of the substrate. A new mechanism for the arginase-catalyzed hydrolysis of L-arginine is proposed which has general relevance to all binuclear hydrolases: (1) Deprotonation of substrate l-arginine(H+) by His141 permits entry of the neutral guanidinium group into the buried Mn2 region. Binding of the substrate imino group (>C=NH), most likely to MnB, is coupled to breaking of the MnB-(mu-H2O) bond, forming a terminal aquo ligand on MnA. (2) Proton transfer from the terminal MnA-aqua ligand to the substrate Ndelta-guanidino atom forms the nucleophilic hydroxide on MnA and the cationic NdeltaH2+-guanidino leaving group. Protonation of the substrate -NdeltaH2+-group is likely assisted by hydrogen bonding to the juxtaposed anionic carboxylate group of Glu277. (3) Attack of the MnA-bound hydroxide at the electrophilic guanidino C-atom forms a tetrahedral intermediate. (4) Formation of products is initiated by cleavage of the Cepsilon-NdeltaH2+ bond, yielding urea and L-ornithine(H+).

摘要

大鼠肝脏精氨酸酶每个亚基含有一个二价锰(II,II)中心,该中心是催化L-精氨酸水解形成尿素和L-鸟氨酸所必需的。最近的晶体学研究表明,Mn2中心由两个配位不等价的锰(II)离子MnA和MnB组成,它们由一个水分子(氢氧根)和两个天冬氨酸残基桥联[Kanyo等人(1996年)《自然》383, 554 - 557]。一个保守残基His141位于距桥联溶剂分子4.2埃的拟底物结合区域附近。目前的电子顺磁共振(EPR)研究表明,将His141突变为缺乏潜在酸碱残基的Asn残基后,Mn2位点没有本质改变,而突变酶的催化活性比野生型酶低10倍。L-赖氨酸、L-精氨酸(底物)和Nω-OH-L-精氨酸(2型结合剂)的结合亲和力与侧链的pKa呈反比。在His141Asn突变体中,L-赖氨酸的结合力弱10倍以上,底物米氏常数(Km)比野生型精氨酸酶大6倍以上(结合力弱)。L-赖氨酸和Nω-OH-L-精氨酸这两种2型结合剂会导致EPR强度大幅下降,表明它们直接与Mn2中心配位。根据这些数据以及2型结合剂的pH依赖性,我们得出结论,His141作为L-赖氨酸侧链氨基和底物胍基-NH-C(NH2)2+去质子化的碱,这些氨基酸的未质子化侧链负责与活性位点结合。另一类抑制剂(1型),包括L-异亮氨酸、L-鸟氨酸和L-瓜氨酸,会抑制酶活性,仅使Mn2 EPR信号的零场分裂产生微小变化,而EPR强度不变,这表明构象变化最小。我们提出1型α-氨基酸抑制剂不直接与任何一个锰离子结合,而是与精氨酸酶上底物α-氨基羧酸盐基团的识别位点相互作用。提出了一种精氨酸酶催化L-精氨酸水解的新机制,该机制与所有双核水解酶普遍相关:(1)His141使底物L-精氨酸(H+)去质子化,使中性胍基进入埋藏的Mn2区域。底物亚氨基(>C=NH)最有可能与MnB结合,这与MnB - (μ-H2O)键的断裂相关,在MnA上形成一个末端水合配体。(2)质子从末端MnA - 水合配体转移到底物Nδ-胍基原子上,在MnA上形成亲核氢氧根和阳离子NδH2+ - 胍基离去基团。底物 - NδH2+ - 基团的质子化可能通过与相邻的Glu277阴离子羧酸盐基团形成氢键来辅助。(3)MnA结合的氢氧根进攻亲电胍基C原子形成四面体中间体。(4)通过Cε - NδH2+键的断裂引发产物形成,产生尿素和L-鸟氨酸(H+)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验