San-Cristobal Rodrigo, Martín-Hernández Roberto, Ramos-Lopez Omar, Martinez-Urbistondo Diego, Micó Víctor, Colmenarejo Gonzalo, Villares Fernandez Paula, Daimiel Lidia, Martínez Jose Alfredo
Precision Nutrition and Cardiometabolic Health Researh Program, Institute on Food and Health Sciences (Institute IMDEA Food), 28049 Madrid, Spain.
Biostatistics & Bioinformatics Unit, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM + CSIS, 28049 Madrid, Spain.
J Clin Med. 2022 Jun 10;11(12):3327. doi: 10.3390/jcm11123327.
The use of routine laboratory biomarkers plays a key role in decision making in the clinical practice of COVID-19, allowing the development of clinical screening tools for personalized treatments. This study performed a short-term longitudinal cluster from patients with COVID-19 based on biochemical measurements for the first 72 h after hospitalization. Clinical and biochemical variables from 1039 confirmed COVID-19 patients framed on the “COVID Data Save Lives” were grouped in 24-h blocks to perform a longitudinal k-means clustering algorithm to the trajectories. The final solution of the three clusters showed a strong association with different clinical severity outcomes (OR for death: Cluster A reference, Cluster B 12.83 CI: 6.11−30.54, and Cluster C 14.29 CI: 6.66−34.43; OR for ventilation: Cluster-B 2.22 CI: 1.64−3.01, and Cluster-C 1.71 CI: 1.08−2.76), improving the AUC of the models in terms of age, sex, oxygen concentration, and the Charlson Comorbidities Index (0.810 vs. 0.871 with p < 0.001 and 0.749 vs. 0.807 with p < 0.001, respectively). Patient diagnoses and prognoses remarkably diverged between the three clusters obtained, evidencing that data-driven technologies devised for the screening, analysis, prediction, and tracking of patients play a key role in the application of individualized management of the COVID-19 pandemics.
常规实验室生物标志物的使用在COVID-19临床实践的决策中起着关键作用,有助于开发用于个性化治疗的临床筛查工具。本研究基于COVID-19患者住院后最初72小时的生化测量进行了短期纵向聚类。将“COVID数据拯救生命”项目中1039例确诊的COVID-19患者的临床和生化变量按24小时时间段分组,对这些轨迹执行纵向k均值聚类算法。三个聚类的最终结果显示与不同的临床严重程度结果密切相关(死亡风险比:以A聚类为参照,B聚类为12.83,置信区间:6.11 - 30.54,C聚类为14.29,置信区间:6.66 - 34.43;通气风险比:B聚类为2.22,置信区间:1.64 - 3.01,C聚类为1.71,置信区间:1.08 - 2.76),在年龄、性别、氧浓度和查尔森合并症指数方面提高了模型的曲线下面积(分别为0.810对0.871,p < 0.001;0.749对0.807,p < 0.001)。所获得的三个聚类之间患者的诊断和预后存在显著差异,表明为患者的筛查、分析、预测和跟踪而设计的数据驱动技术在COVID-19大流行的个体化管理应用中起着关键作用。