Suppr超能文献

在试点众包数据收集后评估新冠肺炎症状与不良结局之间的关联:横断面调查研究。

Assessing Associations Between COVID-19 Symptomology and Adverse Outcomes After Piloting Crowdsourced Data Collection: Cross-sectional Survey Study.

作者信息

Flaks-Manov Natalie, Bai Jiawei, Zhang Cindy, Malpani Anand, Ray Stuart C, Taylor Casey Overby

机构信息

Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.

出版信息

JMIR Form Res. 2022 Dec 6;6(12):e37507. doi: 10.2196/37507.

Abstract

BACKGROUND

Crowdsourcing is a useful way to rapidly collect information on COVID-19 symptoms. However, there are potential biases and data quality issues given the population that chooses to participate in crowdsourcing activities and the common strategies used to screen participants based on their previous experience.

OBJECTIVE

The study aimed to (1) build a pipeline to enable data quality and population representation checks in a pilot setting prior to deploying a final survey to a crowdsourcing platform, (2) assess COVID-19 symptomology among survey respondents who report a previous positive COVID-19 result, and (3) assess associations of symptomology groups and underlying chronic conditions with adverse outcomes due to COVID-19.

METHODS

We developed a web-based survey and hosted it on the Amazon Mechanical Turk (MTurk) crowdsourcing platform. We conducted a pilot study from August 5, 2020, to August 14, 2020, to refine the filtering criteria according to our needs before finalizing the pipeline. The final survey was posted from late August to December 31, 2020. Hierarchical cluster analyses were performed to identify COVID-19 symptomology groups, and logistic regression analyses were performed for hospitalization and mechanical ventilation outcomes. Finally, we performed a validation of study outcomes by comparing our findings to those reported in previous systematic reviews.

RESULTS

The crowdsourcing pipeline facilitated piloting our survey study and revising the filtering criteria to target specific MTurk experience levels and to include a second attention check. We collected data from 1254 COVID-19-positive survey participants and identified the following 6 symptomology groups: abdominal and bladder pain (Group 1); flu-like symptoms (loss of smell/taste/appetite; Group 2); hoarseness and sputum production (Group 3); joint aches and stomach cramps (Group 4); eye or skin dryness and vomiting (Group 5); and no symptoms (Group 6). The risk factors for adverse COVID-19 outcomes differed for different symptomology groups. The only risk factor that remained significant across 4 symptomology groups was influenza vaccine in the previous year (Group 1: odds ratio [OR] 6.22, 95% CI 2.32-17.92; Group 2: OR 2.35, 95% CI 1.74-3.18; Group 3: OR 3.7, 95% CI 1.32-10.98; Group 4: OR 4.44, 95% CI 1.53-14.49). Our findings regarding the symptoms of abdominal pain, cough, fever, fatigue, shortness of breath, and vomiting as risk factors for COVID-19 adverse outcomes were concordant with the findings of other researchers. Some high-risk symptoms found in our study, including bladder pain, dry eyes or skin, and loss of appetite, were reported less frequently by other researchers and were not considered previously in relation to COVID-19 adverse outcomes.

CONCLUSIONS

We demonstrated that a crowdsourced approach was effective for collecting data to assess symptomology associated with COVID-19. Such a strategy may facilitate efficient assessments in a dynamic intersection between emerging infectious diseases, and societal and environmental changes.

摘要

背景

众包是快速收集有关新冠病毒症状信息的一种有用方式。然而,鉴于选择参与众包活动的人群以及基于他们以往经验筛选参与者的常用策略,存在潜在偏差和数据质量问题。

目的

本研究旨在(1)构建一个流程,以便在将最终调查问卷部署到众包平台之前,在试点环境中进行数据质量和人群代表性检查;(2)评估报告既往新冠病毒检测结果呈阳性的调查对象中的新冠病毒症状;(3)评估症状组和潜在慢性病与新冠病毒所致不良结局之间的关联。

方法

我们开发了一项基于网络的调查问卷,并将其托管在亚马逊土耳其机器人(MTurk)众包平台上。我们在2020年8月5日至2020年8月14日进行了一项试点研究,以便在确定流程之前根据我们的需求完善筛选标准。最终调查问卷于2020年8月下旬至12月31日发布。进行分层聚类分析以识别新冠病毒症状组,并对住院和机械通气结局进行逻辑回归分析。最后,我们通过将我们的研究结果与既往系统评价中报告的结果进行比较,对研究结果进行了验证。

结果

众包流程有助于对我们的调查研究进行试点,并修订筛选标准,以针对特定的MTurk经验水平并纳入第二次注意力检查。我们从1254名新冠病毒检测呈阳性的调查对象那里收集了数据,并确定了以下6个症状组:腹部和膀胱疼痛(第1组);流感样症状(嗅觉/味觉/食欲丧失;第2组);声音嘶哑和咳痰(第3组);关节疼痛和胃痉挛(第4组);眼睛或皮肤干燥和呕吐(第5组);以及无症状(第6组)。不同症状组的新冠病毒不良结局危险因素有所不同。在4个症状组中均保持显著的唯一危险因素是前一年接种流感疫苗(第1组:比值比[OR]6.22,95%置信区间2.32 - 17.92;第2组:OR 2.35,95%置信区间1.74 - 3.18;第3组:OR 3.7,95%置信区间1.32 - 10.98;第4组:OR 4.44,95%置信区间1.53 - 14.49)。我们关于腹痛、咳嗽、发热、疲劳、呼吸急促和呕吐作为新冠病毒不良结局危险因素症状的研究结果与其他研究人员的结果一致。我们研究中发现的一些高危症状,包括膀胱疼痛、眼睛或皮肤干燥以及食欲不振,其他研究人员报告的频率较低,且之前未被认为与新冠病毒不良结局有关。

结论

我们证明了众包方法对于收集数据以评估与新冠病毒相关的症状是有效的。这样一种策略可能有助于在新发传染病与社会和环境变化的动态交叉点进行高效评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb8/9746676/306e7da5a85e/formative_v6i12e37507_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验