Suppr超能文献

用于细胞治疗研究的间充质干细胞中多模态纳米颗粒内化过程的优化

Optimization of Multimodal Nanoparticles Internalization Process in Mesenchymal Stem Cells for Cell Therapy Studies.

作者信息

Nucci Mariana P, Mamani Javier B, Oliveira Fernando A, Filgueiras Igor S, Alves Arielly H, Theinel Matheus H, Rodrigues Luiz D, Marti Luciana, Gamarra Lionel F

机构信息

Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil.

LIM44-Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.

出版信息

Pharmaceutics. 2022 Jun 12;14(6):1249. doi: 10.3390/pharmaceutics14061249.

Abstract

Considering there are several difficulties and limitations in labeling stem cells using multifunctional nanoparticles (MFNP), the purpose of this study was to determine the optimal conditions for labeling human bone marrow mesenchymal stem cells (hBM-MSC), aiming to monitor these cells in vivo. Thus, this study provides information on hBM-MSC direct labeling using multimodal nanoparticles in terms of concentration, magnetic field, and period of incubation while maintaining these cells' viability and the homing ability for in vivo experiments. The cell labeling process was assessed using 10, 30, and 50 µg Fe/mL of MFNP, with periods of incubation ranging from 4 to 24 h, with or without a magnetic field, using optical microscopy, near-infrared fluorescence (NIRF), and inductively coupled plasma mass spectrometry (ICP-MS). After the determination of optimal labeling conditions, these cells were applied in vivo 24 h after stroke induction, intending to evaluate cell homing and improve NIRF signal detection. In the presence of a magnetic field and utilizing the maximal concentration of MFNP during cell labeling, the iron load assessed by NIRF and ICP-MS was four times higher than what was achieved before. In addition, considering cell viability higher than 98%, the recommended incubation time was 9 h, which corresponded to a 25.4 g Fe/cell iron load (86% of the iron load internalized in 24 h). The optimization of cellular labeling for application in the in vivo study promoted an increase in the NIRF signal by 215% at 1 h and 201% at 7 h due to the use of a magnetized field during the cellular labeling process. In the case of BLI, the signal does not depend on cell labeling showing no significant differences between unlabeled or labeled cells (with or without a magnetic field). Therefore, the in vitro cellular optimized labeling process using magnetic fields resulted in a shorter period of incubation with efficient iron load internalization using higher MFNP concentration (50 μgFe/mL), leading to significant improvement in cell detection by NIRF technique without compromising cellular viability in the stroke model.

摘要

考虑到使用多功能纳米颗粒(MFNP)标记干细胞存在若干困难和局限性,本研究的目的是确定标记人骨髓间充质干细胞(hBM-MSC)的最佳条件,旨在在体内监测这些细胞。因此,本研究提供了关于使用多模态纳米颗粒直接标记hBM-MSC的浓度、磁场和孵育时间等方面的信息,同时保持这些细胞的活力和体内实验的归巢能力。使用10、30和50μg Fe/mL的MFNP评估细胞标记过程,孵育时间为4至24小时,有或没有磁场,采用光学显微镜、近红外荧光(NIRF)和电感耦合等离子体质谱(ICP-MS)。确定最佳标记条件后,在中风诱导后24小时将这些细胞应用于体内,旨在评估细胞归巢并改善NIRF信号检测。在磁场存在下并在细胞标记过程中使用MFNP的最大浓度时,通过NIRF和ICP-MS评估的铁负载比之前高出四倍。此外,考虑到细胞活力高于98%,推荐的孵育时间为9小时,这相当于25.4 g Fe/细胞的铁负载(24小时内化铁负载的86%)。由于在细胞标记过程中使用了磁化场,体内研究中细胞标记的优化促进了NIRF信号在1小时时增加215%,在7小时时增加201%。在生物发光成像(BLI)的情况下,信号不依赖于细胞标记,未标记或标记的细胞(有或没有磁场)之间没有显著差异。因此,使用磁场的体外细胞优化标记过程导致孵育时间缩短,使用更高的MFNP浓度(50μgFe/mL)实现了有效的铁负载内化,从而在不影响中风模型中细胞活力的情况下显著改善了通过NIRF技术进行的细胞检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a96/9227698/f4b70e7ca448/pharmaceutics-14-01249-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验