文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells.

作者信息

Mamani Javier B, Souza Taylla K F, Nucci Mariana P, Oliveira Fernando A, Nucci Leopoldo P, Alves Arielly H, Rego Gabriel N A, Marti Luciana, Gamarra Lionel F

机构信息

Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil.

LIM44-Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil.

出版信息

Pharmaceutics. 2021 Aug 7;13(8):1219. doi: 10.3390/pharmaceutics13081219.


DOI:10.3390/pharmaceutics13081219
PMID:34452180
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8399657/
Abstract

This in vitro study aims to evaluate the magnetic hyperthermia (MHT) technique and the best strategy for internalization of magnetic nanoparticles coated with aminosilane (SPION) in glioblastoma tumor cells. SPION of 50 and 100 nm were used for specific absorption rate (SAR) analysis, performing the MHT with intensities of 50, 150, and 300 Gauss and frequencies varying between 305 and 557 kHz. The internalization strategy was performed using 100, 200, and 300 µgFe/mL of SPION, with or without Poly-L-Lysine (PLL) and filter, and with or without static or dynamic magnet field. The cell viability was evaluated after determination of MHT best condition of SPION internalization. The maximum SAR values of SPION (50 nm) and SPION (100 nm) identified were 184.41 W/g and 337.83 W/g, respectively, using a frequency of 557 kHz and intensity of 300 Gauss (≈23.93 kA/m). The best internalization strategy was 100 µgFe/mL of SPION (100 nm) using PLL with filter and dynamic magnet field, submitted to MHT for 40 min at 44 °C. This condition displayed 70.0% decreased in cell viability by flow cytometry and 68.1% by BLI. We can conclude that our study is promising as an antitumor treatment, based on intra- and extracellular MHT effects. The optimization of the nanoparticles internalization process associated with their magnetic characteristics potentiates the extracellular acute and late intracellular effect of MHT achieving greater efficiency in the therapeutic process.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/a4c656667a68/pharmaceutics-13-01219-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/91e40a718101/pharmaceutics-13-01219-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/10a8ae68949d/pharmaceutics-13-01219-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/f3283f1d4185/pharmaceutics-13-01219-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/fd6e67aee887/pharmaceutics-13-01219-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/f7f444478d46/pharmaceutics-13-01219-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/766a8334efbf/pharmaceutics-13-01219-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/132f735a758c/pharmaceutics-13-01219-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/a4c656667a68/pharmaceutics-13-01219-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/91e40a718101/pharmaceutics-13-01219-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/10a8ae68949d/pharmaceutics-13-01219-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/f3283f1d4185/pharmaceutics-13-01219-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/fd6e67aee887/pharmaceutics-13-01219-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/f7f444478d46/pharmaceutics-13-01219-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/766a8334efbf/pharmaceutics-13-01219-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/132f735a758c/pharmaceutics-13-01219-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8042/8399657/a4c656667a68/pharmaceutics-13-01219-g008.jpg

相似文献

[1]
In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells.

Pharmaceutics. 2021-8-7

[2]
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.

Int J Mol Sci. 2020-1-31

[3]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[4]
Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma.

Theranostics. 2017-10-13

[5]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[6]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[7]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[8]
High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area.

Pharm Res. 2014-12

[9]
Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.

Cell Cycle. 2021-6

[10]
Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment.

Int J Nanomedicine. 2011-3-25

引用本文的文献

[1]
From Bimetallic Oleates to Customized Biomedical Nanoplatforms: A Versatile Approach for the Multidoping of Ferrites.

ACS Appl Mater Interfaces. 2025-5-21

[2]
In Silico Approach to Model Heat Distribution of Magnetic Hyperthermia in the Tumoral and Healthy Vascular Network Using Tumor-on-a-Chip to Evaluate Effective Therapy.

Pharmaceutics. 2024-8-31

[3]
Breast Cancer Treatment Using the Magneto-Hyperthermia Technique Associated with Omega-3 Polyunsaturated Fatty Acids' Supplementation and Physical Training.

Pharmaceutics. 2024-2-22

[4]
Advances in screening hyperthermic nanomedicines in 3D tumor models.

Nanoscale Horiz. 2024-2-26

[5]
Magnetic Nanoparticles for Therapy and Diagnosis in Nanomedicine.

Pharmaceutics. 2023-6-6

[6]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[7]
Bioluminescence Imaging and ICP-MS Associated with SPION as a Tool for Hematopoietic Stem and Progenitor Cells Homing and Engraftment Evaluation.

Pharmaceutics. 2023-3-3

[8]
Smart Magnetic Drug Delivery Systems for the Treatment of Cancer.

Nanomaterials (Basel). 2023-2-26

[9]
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.

Int J Mol Sci. 2022-11-26

[10]
Optimization of Multimodal Nanoparticles Internalization Process in Mesenchymal Stem Cells for Cell Therapy Studies.

Pharmaceutics. 2022-6-12

本文引用的文献

[1]
Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic-Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model.

Biomedicines. 2021-6-29

[2]
Magnetic Fluid Hyperthermia as Treatment Option for Pancreatic Cancer Cells and Pancreatic Cancer Organoids.

Int J Nanomedicine. 2021

[3]
Extracellular and intracellular intermittent magnetic-fluid hyperthermia treatment of SK-Hep1 hepatocellular carcinoma cells based on magnetic nanoparticles coated with polystyrene sulfonic acid.

PLoS One. 2021-2-5

[4]
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017.

Neuro Oncol. 2020-10-30

[5]
Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape.

Nanomaterials (Basel). 2020-9-11

[6]
Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies.

Molecules. 2020-6-22

[7]
In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process.

Pharmaceutics. 2020-5-6

[8]
Recent Advancements of Magnetic Nanomaterials in Cancer Therapy.

Pharmaceutics. 2020-2-11

[9]
Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles.

Molecules. 2020-2-11

[10]
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.

Int J Mol Sci. 2020-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索