Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
Zepler Institute, University of Southampton, Southampton SO17 1BJ, UK.
Sensors (Basel). 2022 Jun 8;22(12):4344. doi: 10.3390/s22124344.
The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device.
对于芯片实验室 (LOC) 设备来说,关键的挑战是将生物传感和致动的关键要素(例如生物采样或微流控)无缝集成,这些要素通常使用不同的技术来实现。在本文中,我们报告了一种使用电极图案化的柔性印刷电路板 (FPCB) 压在涂有压电薄膜的基底上制造的方便且高效的 LOC 平台,该平台可以基于 FPCB 上的相同电极实现基于表面声波 (SAW) 的声流控和电磁超材料的传感功能的多种功能。我们通过在射频范围内使用 SAW 泵送静止液滴来探索集成结构的致动能力。然后,我们研究了该结构的混合传感能力(包括物理和化学传感能力),采用了在微波频率范围内电磁分裂环谐振器 (SRR) 的概念。这项传感工作的新颖性基于这样一个前提,即所提出的结构包含三个完全解耦的谐振频率用于传感应用,并且每个谐振都被用作单独的物理或化学传感器。该特性补充了声流控能力,与成功的 LOC 设备的目标一致。