Suppr超能文献

用于在液体环境中运行的集成声流体学和芯片实验室的压电薄膜倾斜取向工程。

Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments.

作者信息

Fu Yong-Qing, Pang Hua-Feng, Torun Hamdi, Tao Ran, McHale Glen, Reboud Julien, Tao Kai, Zhou Jian, Luo Jingting, Gibson Desmond, Luo Jikui, Hu PingAn

机构信息

Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

出版信息

Lab Chip. 2021 Jan 21;21(2):254-271. doi: 10.1039/d0lc00887g. Epub 2020 Dec 18.

Abstract

Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed.

摘要

在基于声波的芯片实验室中,有效实现生物传感和液体驱动功能需要不同的声波模式。对于液体中的高效传感,剪切波(厚度剪切体波或水平剪切表面声波)可以实现高灵敏度,而不会有显著的声波能量损失。另一方面,纵向体波或面外位移波(如瑞利波)能够实现高效的采样功能和液体操控。然而,开发一种能在单个压电基板上高效产生多种波模式并执行这两种功能的芯片实验室面临重大挑战,特别是在只有单一晶体取向可用的情况下。本文重点介绍了利用工程化倾斜角压电薄膜实现传感和微流体操控功能的理论和技术的最新进展,这种薄膜能够同时产生纵向(或瑞利)波和厚度剪切体(或水平剪切表面)波。文中还介绍了在倾斜薄膜中产生各种波模式所面临的挑战和理论限制,以及使用溅射沉积方法高效制备倾斜柱状和倾斜晶体压电薄膜的技术。此外,还讨论了不同波模式在具有多种传感和声流体功能的基于倾斜薄膜的芯片实验室中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验