Suppr超能文献

基于带金属伪影减少技术的锥形束 CT 评估经皮椎弓根螺钉置入的准确性。

Accuracy Assessment of Percutaneous Pedicle Screw Placement Using Cone Beam Computed Tomography with Metal Artifact Reduction.

机构信息

Department of Spine Surgery, University Hospital of Strasbourg, 67200 Strasbourg, France.

Department of Interventional Radiology, University Hospital of Strasbourg, 67000 Strasbourg, France.

出版信息

Sensors (Basel). 2022 Jun 18;22(12):4615. doi: 10.3390/s22124615.

Abstract

Metal artifact reduction (MAR) algorithms are used with cone beam computed tomography (CBCT) during augmented reality surgical navigation for minimally invasive pedicle screw instrumentation. The aim of this study was to assess intra- and inter-observer reliability of pedicle screw placement and to compare the perception of baseline image quality (NoMAR) with optimized image quality (MAR). CBCT images of 24 patients operated on for degenerative spondylolisthesis using minimally invasive lumbar fusion were analyzed retrospectively. Images were treated using NoMAR and MAR by an engineer, thus creating 48 randomized files, which were then independently analyzed by 3 spine surgeons and 3 radiologists. The Gertzbein and Robins classification was used for screw accuracy rating, and an image quality scale rated the clarity of pedicle screw and bony landmark depiction. Intra-class correlation coefficients (ICC) were calculated. NoMAR and MAR led to similarly good intra-observer (ICC > 0.6) and excellent inter-observer (ICC > 0.8) assessment reliability of pedicle screw placement accuracy. The image quality scale showed more variability in individual image perception between spine surgeons and radiologists (ICC range 0.51−0.91). This study indicates that intraoperative screw positioning can be reliably assessed on CBCT for augmented reality surgical navigation when using optimized image quality. Subjective image quality was rated slightly superior for MAR compared to NoMAR.

摘要

金属伪影降低(MAR)算法在增强现实手术导航下的锥形束计算机断层扫描(CBCT)中用于微创经皮螺钉内固定。本研究旨在评估置钉的观察者内和观察者间可靠性,并比较基线图像质量(无 MAR)与优化图像质量(MAR)的感知。回顾性分析了 24 例采用微创腰椎融合术治疗退行性脊椎滑脱的患者的 CBCT 图像。由工程师使用 NoMAR 和 MAR 对图像进行处理,从而创建了 48 个随机文件,然后由 3 名脊柱外科医生和 3 名放射科医生分别独立进行分析。使用 Gertzbein 和 Robins 分类法对螺钉准确性进行评分,使用图像质量量表对螺钉和骨标志的清晰度进行评分。计算了组内相关系数(ICC)。NoMAR 和 MAR 均导致良好的观察者内(ICC>0.6)和优秀的观察者间(ICC>0.8)螺钉放置准确性评估可靠性。图像质量量表显示,脊柱外科医生和放射科医生之间的个体图像感知存在更大的变异性(ICC 范围 0.51-0.91)。本研究表明,在增强现实手术导航下,使用优化图像质量时,术中螺钉定位可以在 CBCT 上可靠地进行评估。与 NoMAR 相比,MAR 的主观图像质量被评为稍好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6eb/9228786/e931afc41ba0/sensors-22-04615-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验