Suppr超能文献

[一种基于一维神经网络的自动编码器模型用于癫痫脑电异常检测]

[An autoencoder model based on one-dimensional neural network for epileptic EEG anomaly detection].

作者信息

Ou J, Zhan C, Yang F

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2024 Sep 20;44(9):1796-1804. doi: 10.12122/j.issn.1673-4254.2024.09.20.

Abstract

OBJECTIVE

We propose an autoencoder model based on a one-dimensional convolutional neural network (1DCNN) as the feature extraction network for efficient detection of epileptic EEG anomalies.

METHODS

The local information of normal EEG signals was captured by utilizing the local feature extraction ability of 1DCNN for training of an autoencoder to learn the expression of normal EEG data in low dimensional feature space. With the difference between the input and output as the anomaly score, the threshold was determined by the optimal equilibrium point of the ROC curve, and the EEG signals exceeding the threshold were diagnosed as the seizure data. The performance of the 1DCNN-AE epilepsy detection model was evaluated using the publicly available CHB-MIT scalp EEG dataset and TUH scalp EEG dataset.

RESULTS

The AUC of the 1DCNN-AE model reached 0.890 of CHB-MIT and 0.686 of TUH under the average level of patients, and the epilepsy detection rate reached 0.974 and 0.893, and these results were better than the latest epilepsy anomaly detection models LSTM-VAE and GRU-VAE. The 1DCNN model had a parameter quantity of 58.5M, which was at the same level with LSTM-VAE (47.4 M) and GRU-VAE (36.9 M) but with much smaller FLOPs (0.377 G) than LSTM-VAE (21.6 G) and GRU-VAE (16.2 G).

CONCLUSION

The autoencoder model based one-dimensional convolutional neural network can effectively detect abnormal EEG signals in epileptic seizure.

摘要

目的

我们提出一种基于一维卷积神经网络(1DCNN)的自动编码器模型作为特征提取网络,用于高效检测癫痫性脑电图异常。

方法

利用1DCNN的局部特征提取能力来捕获正常脑电图信号的局部信息,以训练自动编码器,从而学习正常脑电图数据在低维特征空间中的表达。以输入与输出之间的差异作为异常分数,通过ROC曲线的最优平衡点确定阈值,并将超过该阈值的脑电图信号诊断为癫痫发作数据。使用公开可用的CHB - MIT头皮脑电图数据集和TUH头皮脑电图数据集评估1DCNN - AE癫痫检测模型的性能。

结果

在患者平均水平下,1DCNN - AE模型在CHB - MIT数据集上的AUC达到0.890,在TUH数据集上达到0.686,癫痫检测率分别达到0.974和0.893,这些结果优于最新的癫痫异常检测模型LSTM - VAE和GRU - VAE。1DCNN模型的参数量为5850万,与LSTM - VAE(4740万)和GRU - VAE(3690万)处于同一水平,但FLOPs(0.377G)比LSTM - VAE(21.6G)和GRU - VAE(16.2G)小得多。

结论

基于一维卷积神经网络的自动编码器模型能够有效检测癫痫发作中的异常脑电图信号。

相似文献

引用本文的文献

本文引用的文献

5
Epileptic Seizures Detection Using Deep Learning Techniques: A Review.基于深度学习技术的癫痫发作检测:综述
Int J Environ Res Public Health. 2021 May 27;18(11):5780. doi: 10.3390/ijerph18115780.
6
Epilepsy: A Clinical Overview.癫痫:临床概述。
Am J Med. 2021 Jul;134(7):840-847. doi: 10.1016/j.amjmed.2021.01.038. Epub 2021 Mar 26.
10
Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection.基于 EEG 的癫痫发作检测的深度多视图特征学习。
IEEE Trans Neural Syst Rehabil Eng. 2019 Oct;27(10):1962-1972. doi: 10.1109/TNSRE.2019.2940485. Epub 2019 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验