Suppr超能文献

双模型放射组学生物标志物可预测轻度认知障碍进展为阿尔茨海默病的情况。

Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer's Disease.

作者信息

Zhou Hucheng, Jiang Jiehui, Lu Jiaying, Wang Min, Zhang Huiwei, Zuo Chuantao

机构信息

Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.

PET Center, Huashan Hospital, Fudan University, Shanghai, China.

出版信息

Front Neurosci. 2019 Jan 11;12:1045. doi: 10.3389/fnins.2018.01045. eCollection 2018.

Abstract

Predicting progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD) is clinically important. In this study, we propose a dual-model radiomic analysis with multivariate Cox proportional hazards regression models to investigate promising risk factors associated with MCI conversion to AD. T1 structural magnetic resonance imaging (MRI) and F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) data, from the AD Neuroimaging Initiative database, were collected from 131 patients with MCI who converted to AD within 3 years and 132 patients with MCI without conversion within 3 years. These subjects were randomly partition into 70% training dataset and 30% test dataset with multiple times. We fused MRI and PET images by wavelet method. In a subset of subjects, a group comparison was performed using a two-sample -test to determine regions of interest (ROIs) associated with MCI conversion. 172 radiomic features from ROIs for each individual were established using a published radiomics tool. Finally, L1-penalized Cox model was constructed and Harrell's C index (C-index) was used to evaluate prediction accuracy of the model. To evaluate the efficacy of our proposed method, we used a same analysis framework to evaluate MRI and PET data separately. We constructed prognostic Cox models with: clinical data, MRI images, PET images, fused MRI/PET images, and clinical variables and fused MRI/PET images in combination. The experimental results showed that captured ROIs significantly associated with conversion to AD, such as gray matter atrophy in the bilateral hippocampus and hypometabolism in the temporoparietal cortex. Imaging model (MRI/PET/fused) provided significant enhancement in prediction of conversion compared to clinical models, especially the fused-modality Cox model. Moreover, the combination of fused-modality imaging and clinical variables resulted in the greatest accuracy of prediction. The average C-index for the clinical/MRI/PET/fused/combined model in the test dataset was 0.69, 0.73, 0.73 and 0.75, and 0.78, respectively. These results suggested that a combination of radiomic analysis and Cox model analyses could be used successfully in survival analysis and may be powerful tools for personalized precision medicine patients with potential to undergo conversion from MCI to AD.

摘要

预测轻度认知障碍(MCI)向阿尔茨海默病(AD)的进展在临床上具有重要意义。在本研究中,我们提出一种采用多变量Cox比例风险回归模型的双模型放射组学分析方法,以探究与MCI转化为AD相关的潜在风险因素。从阿尔茨海默病神经影像倡议数据库收集了131例在3年内转化为AD的MCI患者以及132例在3年内未发生转化的MCI患者的T1结构磁共振成像(MRI)和F - 氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)数据。这些受试者被多次随机划分为70%的训练数据集和30%的测试数据集。我们通过小波方法融合了MRI和PET图像。在一部分受试者中,使用双样本t检验进行组间比较,以确定与MCI转化相关的感兴趣区域(ROI)。使用已发表的放射组学工具为每个个体从ROI中提取172个放射组学特征。最后,构建L1惩罚Cox模型,并使用Harrell's C指数(C-index)评估模型的预测准确性。为了评估我们提出方法的有效性,我们使用相同的分析框架分别评估MRI和PET数据。我们构建了包含以下因素的预后Cox模型:临床数据、MRI图像、PET图像、融合的MRI/PET图像,以及临床变量与融合的MRI/PET图像的组合。实验结果表明,所捕获的ROI与向AD的转化显著相关,如双侧海马灰质萎缩和颞顶叶皮质代谢减低。与临床模型相比,影像模型(MRI/PET/融合)在转化预测方面有显著增强,尤其是融合模态Cox模型。此外,融合模态影像与临床变量的组合产生了最高的预测准确性。测试数据集中临床/MRI/PET/融合/联合模型的平均C指数分别为0.69、0.73、0.73、0.75和0.78。这些结果表明,放射组学分析和Cox模型分析的组合可成功用于生存分析,并且可能成为有从MCI转化为AD潜力的患者进行个性化精准医疗的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7676/6338093/bf7e2bae0dc0/fnins-12-01045-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验