Suppr超能文献

通过在硫化镉空心立方体上包裹硫化锌铟构建直接Z型异质结构用于高效光催化产氢

Constructing Direct Z-Scheme Heterostructure by Enwrapping ZnIn S on CdS Hollow Cube for Efficient Photocatalytic H Generation.

作者信息

Li Chuan-Qi, Du Xin, Jiang Shan, Liu Yan, Niu Zhu-Lin, Liu Zhong-Yi, Yi Sha-Sha, Yue Xin-Zheng

机构信息

College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.

Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China.

出版信息

Adv Sci (Weinh). 2022 Aug;9(24):e2201773. doi: 10.1002/advs.202201773. Epub 2022 Jun 24.

Abstract

Rational design hybrid nanostructure photocatalysts with efficient charge separation and transfer, and good solar light harvesting ability have critical significance for achieving high solar-to-chemical conversion efficiency. Here a highly active and stable composite photocatalyst is reported by integrating ultrathin ZnIn S nanosheets on surface of hollow CdS cube to form the cube-in-cube structure. Experimental results combined with density functional theory calculations confirm that the Z-scheme ZnIn S /CdS heterojunction is formed, which highly boosts the charge separation and transfer under the local-electric-field at semiconductor/semiconductor interface, and thus prolongs their lifetimes. Moreover, such a structure affords the highly enhanced light-harvesting property. The optimized ZnIn S /CdS nanohybrids exhibit superior H generation rate under visible-light irradiation (λ ≥ 420 nm) with excellent photochemical stability during 20 h continuous operation.

摘要

合理设计具有高效电荷分离和转移以及良好太阳光捕获能力的混合纳米结构光催化剂对于实现高太阳能到化学能的转换效率具有至关重要的意义。在此,通过将超薄ZnInS纳米片整合到中空CdS立方体表面以形成立方体内立方结构,报道了一种高活性和稳定的复合光催化剂。实验结果与密度泛函理论计算相结合证实形成了Z型ZnInS/CdS异质结,这极大地促进了半导体/半导体界面处局部电场下的电荷分离和转移,从而延长了它们的寿命。此外,这种结构具有高度增强的光捕获性能。优化后的ZnInS/CdS纳米杂化物在可见光照射(λ≥420 nm)下表现出优异的产氢速率,在连续运行20小时期间具有出色的光化学稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ce5/9404389/d58cdbf93128/ADVS-9-2201773-g005.jpg

相似文献

1
Constructing Direct Z-Scheme Heterostructure by Enwrapping ZnIn S on CdS Hollow Cube for Efficient Photocatalytic H Generation.
Adv Sci (Weinh). 2022 Aug;9(24):e2201773. doi: 10.1002/advs.202201773. Epub 2022 Jun 24.
3
4
Construction of ZnIn S /CdS/PdS S-Scheme Heterostructure for Efficient Photocatalytic H Production.
Small. 2023 Jul;19(27):e2207758. doi: 10.1002/smll.202207758. Epub 2023 Mar 25.
5
Ultrathin ZnIn S Nanosheets Anchored on Ti C T MXene for Photocatalytic H Evolution.
Angew Chem Int Ed Engl. 2020 Jul 6;59(28):11287-11292. doi: 10.1002/anie.202002136. Epub 2020 May 7.
6
Supporting Ultrathin ZnIn S Nanosheets on Co/N-Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H Generation.
Adv Mater. 2019 Oct;31(41):e1903404. doi: 10.1002/adma.201903404. Epub 2019 Jul 25.
7
Hierarchical ZnIn S /MoSe Nanoarchitectures for Efficient Noble-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light.
ChemSusChem. 2017 Nov 23;10(22):4624-4631. doi: 10.1002/cssc.201701345. Epub 2017 Sep 13.
8
Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn S Nanosheets for Photocatalytic CO Reduction.
Chemistry. 2018 Dec 10;24(69):18529-18534. doi: 10.1002/chem.201803250. Epub 2018 Oct 1.

引用本文的文献

1
Hollow core-shell heterojunction TAPB-COF@ZnInS as highly efficient photocatalysts for carbon dioxide reduction.
Chem Sci. 2024 Dec 30;16(5):2316-2324. doi: 10.1039/d4sc07077a. eCollection 2025 Jan 29.
4
Drivers and Pathways for the Recovery of Critical Metals from Waste-Printed Circuit Boards.
Adv Sci (Weinh). 2024 Aug;11(30):e2309635. doi: 10.1002/advs.202309635. Epub 2024 Jun 5.
5
Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H evolution.
Nat Commun. 2024 Mar 23;15(1):2600. doi: 10.1038/s41467-024-47022-z.
6
Metal Sulfide S-Scheme Homojunction for Photocatalytic Selective Phenylcarbinol Oxidation.
Adv Sci (Weinh). 2024 May;11(17):e2400099. doi: 10.1002/advs.202400099. Epub 2024 Feb 28.
7
Defect and Donor Manipulated Highly Efficient Electron-Hole Separation in a 3D Nanoporous Schottky Heterojunction.
JACS Au. 2023 Oct 21;3(11):3127-3140. doi: 10.1021/jacsau.3c00482. eCollection 2023 Nov 27.
8
Hollow Spherical Pd/CdS/NiS with Carrier Spatial Separation for Photocatalytic Hydrogen Generation.
Nanomaterials (Basel). 2023 Apr 10;13(8):1326. doi: 10.3390/nano13081326.
9
Detecting and Quantifying Wavelength-Dependent Electrons Transfer in Heterostructure Catalyst via In Situ Irradiation XPS.
Adv Sci (Weinh). 2023 Feb;10(4):e2205020. doi: 10.1002/advs.202205020. Epub 2022 Nov 14.

本文引用的文献

1
Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments.
Adv Mater. 2021 Dec;33(52):e2105195. doi: 10.1002/adma.202105195. Epub 2021 Oct 7.
3
Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review.
Chem Rev. 2021 Aug 11;121(15):9165-9195. doi: 10.1021/acs.chemrev.1c00034. Epub 2021 Jul 30.
5
Fabrication of CdS Frame-in-Cage Particles for Efficient Photocatalytic Hydrogen Generation under Visible-Light Irradiation.
Adv Mater. 2020 Oct;32(39):e2004561. doi: 10.1002/adma.202004561. Epub 2020 Aug 19.
6
Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies.
Chem Rev. 2020 Jan 22;120(2):919-985. doi: 10.1021/acs.chemrev.9b00201. Epub 2019 Aug 8.
7
Design of Heterostructured Hollow Photocatalysts for Solar-to-Chemical Energy Conversion.
Adv Mater. 2019 Jul;31(29):e1900281. doi: 10.1002/adma.201900281. Epub 2019 May 29.
9
Z-Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi WO Nanosheets with Enhanced Photocatalytic Activities.
Angew Chem Int Ed Engl. 2019 Feb 11;58(7):2073-2077. doi: 10.1002/anie.201813417. Epub 2019 Jan 18.
10
Formation of Hierarchical CoS@ZnInS Heterostructured Cages as an Efficient Photocatalyst for Hydrogen Evolution.
J Am Chem Soc. 2018 Nov 14;140(45):15145-15148. doi: 10.1021/jacs.8b07721. Epub 2018 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验