Su Tongming, Men Chengzheng, Chen Liuyun, Chu Bingxian, Luo Xuan, Ji Hongbing, Chen Jianhua, Qin Zuzeng
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Adv Sci (Weinh). 2022 Feb;9(4):e2103715. doi: 10.1002/advs.202103715. Epub 2021 Nov 21.
Constructing an efficient photoelectron transfer channel to promote the charge carrier separation is a great challenge for enhancing photocatalytic hydrogen evolution from water. In this work, an ultrathin 2D/2D Ti C T /ZnIn S heterostructure is rationally designed by coupling the ultrathin ZnIn S with few-layered Ti C T via the electrostatic self-assembly strategy. The 2D/2D Ti C T /ZnIn S heterostructure possesses larger contact area and strong electronic interaction to promote the charge carrier transfer at the interface, and the sulfur vacancy on the ZnIn S acting as the electron trap further enhances the separation of the photoinduced electrons and holes. As a consequence, the optimal 2D/2D Ti C T /ZnIn S composite exhibits a high photocatalytic hydrogen evolution rate of 148.4 µmol h , which is 3.6 times and 9.2 times higher than that of ZnIn S nanosheet and flower-like ZnIn S , respectively. Moreover, the stability of the ZnIn S is significantly improved after coupling with the few-layered Ti C T . The characterizations and density functional theory calculation demonstrate that the synergistic effect of the sulfur vacancy and Ti C T cocatalyst can greatly promote the electrons transfer from ZnIn S to Ti C T and the separation of photogenerated charge carriers, thus enhancing the photocatalytic hydrogen evolution from water.
构建一个高效的光电子转移通道以促进电荷载流子的分离,对于提高光催化水分解产氢性能而言是一项巨大挑战。在本工作中,通过静电自组装策略将超薄的ZnInS与少层TiCT耦合,合理设计了一种超薄的二维/二维TiCT/ZnInS异质结构。二维/二维TiCT/ZnInS异质结构具有更大的接触面积和强电子相互作用,以促进界面处的电荷载流子转移,并且ZnInS上的硫空位作为电子陷阱进一步增强了光生电子和空穴的分离。结果,最优的二维/二维TiCT/ZnInS复合材料表现出148.4 μmol h的高光催化析氢速率,分别是ZnInS纳米片和花状ZnInS的3.6倍和9.2倍。此外,与少层TiCT耦合后,ZnInS的稳定性显著提高。表征和密度泛函理论计算表明,硫空位和TiCT助催化剂的协同效应可极大促进电子从ZnInS转移至TiCT以及光生电荷载流子的分离,从而增强光催化水分解产氢性能。