Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA.
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
Cell. 2024 Oct 17;187(21):5951-5966.e18. doi: 10.1016/j.cell.2024.08.018. Epub 2024 Sep 10.
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.
活细胞中电化学环境的控制通常归因于离子通道。在这里,我们表明生物分子凝聚物的形成可以调节细菌细胞中的电化学环境,从而全局影响细胞过程。凝聚物的形成会产生电势梯度,这直接影响细胞的电化学性质,包括细胞质 pH 值和膜电位。凝聚物的形成还会由于被动环境效应而放大细胞间电化学性质的变异性。电化学平衡的调节进一步控制细胞与环境的相互作用,从而直接影响细菌在抗生素胁迫下的存活。细胞内电化学平衡的凝聚物介导的转移驱动了全局基因表达谱的变化。我们的工作揭示了凝聚物的生化功能,这些功能不仅限于驱动和参与凝聚物形成的生物分子的功能,并揭示了凝聚物在调节全局细胞生理学中的作用。