Suppr超能文献

基于深度卷积神经网络的单平面移动透视图像的个性化姿势估计。

Personalised pose estimation from single-plane moving fluoroscope images using deep convolutional neural networks.

机构信息

Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.

出版信息

PLoS One. 2022 Jun 24;17(6):e0270596. doi: 10.1371/journal.pone.0270596. eCollection 2022.

Abstract

Measuring joint kinematics is a key requirement for a plethora of biomechanical research and applications. While x-ray based systems avoid the soft-tissue artefacts arising in skin-based measurement systems, extracting the object's pose (translation and rotation) from the x-ray images is a time-consuming and expensive task. Based on about 106'000 annotated images of knee implants, collected over the last decade with our moving fluoroscope during activities of daily living, we trained a deep-learning model to automatically estimate the 6D poses for the femoral and tibial implant components. By pretraining a single stage of our architecture using renderings of the implant geometries, our approach offers personalised predictions of the implant poses, even for unseen subjects. Our approach predicted the pose of both implant components better than about 0.75 mm (in-plane translation), 25 mm (out-of-plane translation), and 2° (all Euler-angle rotations) over 50% of the test samples. When evaluating over 90% of test samples, which included heavy occlusions and low contrast images, translation performance was better than 1.5 mm (in-plane) and 30 mm (out-of-plane), while rotations were predicted better than 3-4°. Importantly, this approach now allows for pose estimation in a fully automated manner.

摘要

测量关节运动学是众多生物力学研究和应用的关键要求。虽然基于 X 射线的系统避免了基于皮肤的测量系统中出现的软组织伪影,但从 X 射线图像中提取物体的姿态(平移和旋转)是一项耗时且昂贵的任务。基于过去十年在日常活动中使用移动荧光透视仪收集的约 106000 张膝关节植入物的注释图像,我们训练了一个深度学习模型来自动估计股骨和胫骨植入物组件的 6D 姿态。通过使用植入物几何形状的渲染预训练我们的体系结构的单个阶段,我们的方法即使对于看不见的受试者也提供了植入物姿态的个性化预测。我们的方法预测了两个植入物组件的姿态,在超过 50%的测试样本中,其在平面内平移的精度优于 0.75 毫米,在平面外平移的精度优于 25 毫米,所有欧拉角旋转的精度优于 2°。在评估超过 90%的测试样本时,包括严重遮挡和低对比度图像,平移性能优于 1.5 毫米(在平面内)和 30 毫米(在平面外),而旋转预测精度优于 3-4°。重要的是,这种方法现在可以实现完全自动化的姿态估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验