Suppr超能文献

一种新颖的后处理技术,用于纠正单平面荧光透视测量全膝关节置换运动学中对称植入物模糊的问题。

A novel post-processing technique for correcting symmetric implant ambiguity in measuring total knee arthroplasty kinematics from single-plane fluoroscopy.

机构信息

Department of Mechanical & Aerospace Engineering, PO Box 116250, Gainesville, FL 32611, USA.

Department of Electrical & Computer Engineering, 968 Center Drive, Gainesville, FL 32611, USA.

出版信息

J Biomech. 2024 Jun;170:112172. doi: 10.1016/j.jbiomech.2024.112172. Epub 2024 May 25.

Abstract

Recent advancements in computer vision and machine learning enable autonomous measurement of total knee arthroplasty kinematics through single-plane fluoroscopy. However, symmetric components present challenges in optimization routines, causing "symmetry traps" and ambiguous poses. Achieving clinically robust kinematics measurement requires addressing this issue. We devised an algorithm that converts a "true" pose to its corresponding "symmetry trap" orientation. From a dataset of nearly 13,000 human supervised kinematics, this algorithm constructs an augmented dataset of "true" and "symmetry trap" kinematics, used to train eight classification machine learning algorithms. The outputs from the highest-performing algorithm classify kinematics sequences as 'obviously true' or 'potentially ambiguous.' We construct a spline through 'obviously true' poses, and 'ambiguous' poses are compared to the spline to determine correct orientation. The machine learning algorithms achieved 88-94% accuracy on our internal test set and 91-93% on our external test set. Applying our spline algorithm to kinematics sequences yielded 91.1% accuracy, 94% specificity, but 67% sensitivity. The accuracy of standard ML algorithms for implants within 5 degrees of a pure-lateral view was 71%, rising to 88% beyond 5 degrees. This pioneering study systematizes addressing model-image registration issues with symmetric tibial implants. High accuracy suggests potential use of ML algorithms to mitigate shape-ambiguity errors in pose measurements from single-plane fluoroscopy. Our results also suggest an imaging protocol for measuring kinematics that favors more oblique viewing angles, which could further disambiguate "true" and "symmetry trap" poses.

摘要

最近计算机视觉和机器学习的进展使得通过单平面荧光透视术对全膝关节置换术运动学进行自动测量成为可能。然而,对称组件在优化程序中带来了挑战,导致出现“对称陷阱”和姿势不明确。要实现临床稳健的运动学测量,就需要解决这个问题。我们设计了一种算法,可以将“真实”姿势转换为其对应的“对称陷阱”方向。从近 13000 个人类监督运动学的数据集,该算法构建了一个增强的“真实”和“对称陷阱”运动学数据集,用于训练八个分类机器学习算法。表现最佳的算法的输出将运动学序列分类为“明显真实”或“可能存在歧义”。我们通过“明显真实”姿势构建样条曲线,然后将“模糊”姿势与样条曲线进行比较,以确定正确的方向。机器学习算法在我们的内部测试集上达到了 88-94%的准确率,在我们的外部测试集上达到了 91-93%的准确率。将我们的样条算法应用于运动学序列,得到了 91.1%的准确率、94%的特异性和 67%的敏感性。对于距离纯外侧视图 5 度以内的植入物,标准 ML 算法的准确率为 71%,超过 5 度后准确率上升到 88%。这项开创性的研究系统地解决了具有对称胫骨植入物的模型图像配准问题。高精度表明,机器学习算法有可能用于减轻单平面荧光透视术中姿势测量的形状歧义误差。我们的结果还建议采用一种测量运动学的成像方案,该方案偏向于更倾斜的视角,这可以进一步区分“真实”和“对称陷阱”姿势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验