Suppr超能文献

可穿戴传感器的生物可接受性:评估离子浸出诱导细胞炎症的机制研究。

Bio-acceptability of wearable sensors: a mechanistic study towards evaluating ionic leaching induced cellular inflammation.

机构信息

Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St. Miami, Florida, 33174, USA.

NanoBiotech Lab, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA.

出版信息

Sci Rep. 2022 Jun 24;12(1):10782. doi: 10.1038/s41598-022-13810-0.

Abstract

The recent need for remote health wellness monitoring has led to the extensive use of wearable sensors. Owing to their increased use, these sensors are required to exhibit both functionality and safety to the user. A major component in the fabrication of these sensors and their associated circuitry is the use of metallic/organic conductive inks. However, very less is known about the interfacial and molecular interactions of these inks with biological matter as they can result in an inflammatory reaction to the user. Significant efforts are thus needed to explore and improve the bio-acceptability of such conductive ink-based wearable sensors. The present study investigates the biocompatibility of encapsulated and non-encapsulated wearable electrochemical sensors used for sensing uric acid as a biomarker for wound healing fabricated using screen-printing technique. Ionic release of metallic ions was investigated first to understand the susceptibility of the conductive inks towards ionic leaching when in contact with a fluid. Time-lapse investigation using ICPS (inductive couple plasma spectroscopy) shows a high concentration (607.31 ppb) of leached silver (Ag) ions from the non-encapsulated sensors. The cell viability data suggests a 2.5-fold improvement in the sensor biocompatibility for an encapsulated sensor. While the carbon ink shows negligible effect on cell viability, the silver ink elicits significant decrease (< 50%) in cell viability at concentrations higher than 2 mg ml. The toxicity pathway of these sensors was further determined to be through the generation of reactive oxygen species resulting in over 20% apoptotic cell death. Our results show that the lower biocompatibility of the non-encapsulated sensor attributes to the higher leaching of Ag ions from the printed inks which elicits several different inflammatory pathways. This work highlights the importance biocompatibility evaluation of the material used in sensor fabrication to develop safe and sustainable sensors for long-term applications.

摘要

最近对远程健康保健监测的需求导致了可穿戴传感器的广泛使用。由于它们的使用增加,这些传感器需要对用户表现出功能和安全性。在这些传感器及其相关电路的制造中,一个主要组成部分是使用金属/有机导电油墨。然而,由于这些油墨与生物物质的界面和分子相互作用知之甚少,因此它们可能会导致用户发生炎症反应。因此,需要进行大量努力来探索和提高基于这种导电油墨的可穿戴传感器的生物可接受性。本研究调查了用于感测尿酸(作为伤口愈合生物标志物)的封装和未封装的可穿戴电化学传感器的生物相容性,这些传感器是使用丝网印刷技术制造的。首先研究了金属离子的离子释放,以了解当与流体接触时导电油墨对离子浸出的敏感性。使用 ICPS(感应耦合等离子体光谱)进行的时变研究表明,未封装传感器从非封装传感器中浸出的银(Ag)离子浓度很高(607.31ppb)。细胞活力数据表明,封装传感器的传感器生物相容性提高了 2.5 倍。虽然碳油墨对细胞活力几乎没有影响,但银油墨在浓度高于 2mg/ml 时会导致细胞活力显着下降(<50%)。进一步确定了这些传感器的毒性途径是通过生成活性氧物质导致超过 20%的凋亡细胞死亡。我们的研究结果表明,非封装传感器的生物相容性较低归因于印刷油墨中 Ag 离子的浸出较高,这会引发几种不同的炎症途径。这项工作强调了在传感器制造中对材料进行生物相容性评估的重要性,以开发用于长期应用的安全和可持续的传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70c9/9232592/969ba48f495c/41598_2022_13810_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验