Suppr超能文献

利用 CO 激光增强石墨墨水的电子转移,用于生物流体中的果糖生物传感。

Exploiting CO laser to boost graphite inks electron transfer for fructose biosensing in biological fluids.

机构信息

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy.

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy.

出版信息

Biosens Bioelectron. 2024 Nov 1;263:116620. doi: 10.1016/j.bios.2024.116620. Epub 2024 Jul 31.

Abstract

The possibility to print electronics by means of office tools has remarkedly increased the possibility to design affordable and robust point-of-care/need devices. However, conductive inks suffer from low electrochemical and rheological performances limiting their applicability in biosensors. Herein, a fast CO laser approach to activate printed carbon inks towards direct enzymatic bioelectrocatalysis (3 generation) is proposed and exploited to build biosensors for D-fructose analysis in biological fluids. The CO laser treatment was compared with two lab-grade printed transducers fabricated with solvent (SB) and water (WB) based carbon inks. The use of the laser revealed significant morpho-chemical variations on the printed inks and was investigated towards enzymatic direct catalysis, using Fructose dehydrogenase (FDH) integrated into entirely lab-produced biosensors. The laser-driven activation of the inks unveils the inks' direct electron transfer (DET) ability between FDH and the electrode surface. Sub-micromolar limits of detection (SB-ink LOD = 0.47 μM; WB-ink LOD = 0.24 μM) and good linear ranges (SB-ink: 5-100 μM; WB-ink: 1-50 μM) were obtained, together with high selectivity due to use of the enzyme and the low applied overpotential (0.15 V vs. pseudo-Ag/AgCl). The laser-activated biosensors were successfully used for D-fructose determination in complex synthetic and real biological fluids (recoveries: 93-112%; RSD ≤8.0%, n = 3); in addition, the biosensor ability for continuous measurement (1.5h) was also demonstrated simulating physiological D-fructose fluctuations in cerebrospinal fluid.

摘要

通过办公工具打印电子产品的可能性显著提高了设计经济实惠且坚固耐用的即时/现场医疗设备的可能性。然而,导电油墨的电化学和流变性能较低,限制了它们在生物传感器中的应用。本文提出并利用快速 CO 激光方法对打印碳油墨进行激活,以实现直接酶生物电化学(第 3 代),用于构建生物流体中 D-果糖分析的生物传感器。将 CO 激光处理与使用溶剂(SB)和水(WB)基碳油墨制造的两种实验室级打印换能器进行了比较。使用激光对打印油墨进行了显著的形态化学变化研究,并将其用于直接酶催化,使用整合到完全实验室生产的生物传感器中的果糖脱氢酶(FDH)。激光驱动的油墨激活揭示了 FDH 与电极表面之间的油墨直接电子转移(DET)能力。获得了亚微摩尔检测限(SB-ink LOD = 0.47 μM;WB-ink LOD = 0.24 μM)和良好的线性范围(SB-ink:5-100 μM;WB-ink:1-50 μM),并且由于使用了酶和低应用过电势(0.15 V 与伪 Ag/AgCl 相比)而具有高选择性。激光激活的生物传感器成功地用于复杂合成和真实生物流体中的 D-果糖测定(回收率:93-112%;RSD ≤8.0%,n = 3);此外,还证明了生物传感器在模拟脑脊髓液中生理 D-果糖波动的情况下进行连续测量(1.5 小时)的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验