Suppr超能文献

使用差分进化学习深度神经网络架构。案例研究:医学图像处理。

Learning deep neural networks' architectures using differential evolution. Case study: Medical imaging processing.

机构信息

Department of Computer Science, Faculty of Sciences, University of Craiova, Craiova, 200585, Romania.

出版信息

Comput Biol Med. 2022 Jul;146:105623. doi: 10.1016/j.compbiomed.2022.105623. Epub 2022 May 17.

Abstract

The COVID-19 pandemic has changed the way we practice medicine. Cancer patient and obstetric care landscapes have been distorted. Delaying cancer diagnosis or maternal-fetal monitoring increased the number of preventable deaths or pregnancy complications. One solution is using Artificial Intelligence to help the medical personnel establish the diagnosis in a faster and more accurate manner. Deep learning is the state-of-the-art solution for image classification. Researchers manually design the structure of fix deep learning neural networks structures and afterwards verify their performance. The goal of this paper is to propose a potential method for learning deep network architectures automatically. As the number of networks architectures increases exponentially with the number of convolutional layers in the network, we propose a differential evolution algorithm to traverse the search space. At first, we propose a way to encode the network structure as a candidate solution of fixed-length integer array, followed by the initialization of differential evolution method. A set of random individuals is generated, followed by mutation, recombination, and selection. At each generation the individuals with the poorest loss values are eliminated and replaced with more competitive individuals. The model has been tested on three cancer datasets containing MRI scans and histopathological images and two maternal-fetal screening ultrasound images. The novel proposed method has been compared and statistically benchmarked to four state-of-the-art deep learning networks: VGG16, ResNet50, Inception V3, and DenseNet169. The experimental results showed that the model is competitive to other state-of-the-art models, obtaining accuracies between 78.73% and 99.50% depending on the dataset it had been applied on.

摘要

新冠疫情改变了我们行医的方式。癌症患者和产科护理领域受到了影响。延迟癌症诊断或母婴监测增加了可预防的死亡或妊娠并发症的数量。一种解决方案是使用人工智能帮助医务人员更快、更准确地建立诊断。深度学习是图像分类的最新解决方案。研究人员手动设计固定深度学习神经网络结构的结构,然后验证它们的性能。本文的目的是提出一种自动学习深度网络架构的潜在方法。由于网络架构的数量随着网络中卷积层的数量呈指数级增长,因此我们提出了一种差分进化算法来遍历搜索空间。首先,我们提出了一种将网络结构编码为固定长度整数数组候选解的方法,然后初始化差分进化方法。生成一组随机个体,然后进行突变、重组和选择。在每一代中,损失值最差的个体被淘汰,并被更具竞争力的个体取代。该模型已在包含 MRI 扫描和组织病理学图像的三个癌症数据集以及两个母婴筛查超声图像上进行了测试。新提出的方法与四种最先进的深度学习网络(VGG16、ResNet50、Inception V3 和 DenseNet169)进行了比较和统计基准测试。实验结果表明,该模型具有竞争力,在不同数据集上的准确率在 78.73%到 99.50%之间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ce/9112664/50015bee490a/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验