School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA.
School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
Int J Food Microbiol. 2022 Sep 16;377:109785. doi: 10.1016/j.ijfoodmicro.2022.109785. Epub 2022 Jun 11.
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
许多石油衍生的塑料,包括食品包装材料,都是不可生物降解的,设计用于一次性使用。由于管理不善和缺乏技术经济可行的塑料废物回收技术,每年约有 1.75 亿吨塑料进入陆地和海洋生态系统。可再生、可生物降解的聚合物基食品包装材料可以减少这种环境污染。甘蔗或甜菜制糖会产生有机废物流,其中含有可发酵的基质,包括糖、酸和芳烃。微生物代谢可以用来将这些分子引导到平台化学品或生物聚合物上,以生成具有活性或感应分子嵌入生物聚合物基质中的可生物降解的食品包装材料。智能包装可以实时监测食品质量,确保健康安全,并提供经济和环境效益。活性包装材料具有抗菌、抗氧化和光或气体阻隔等功能特性。本文通过利用糖业产生的有机废物,为食品应用提供了潜在的可生物降解的智能/活性聚合物包装的概述。我们强调了潜在的微生物途径和代谢工程策略,以有效地将废碳生物转化为目标平台化学品,如乳酸、琥珀酸、粘康酸和生物聚合物,包括聚羟基烷酸酯和细菌纤维素。获得的平台化学品可用于生产可生物降解的聚合物,如聚(己二酸丁二醇酯-对苯二甲酸酯)(PBAT),可替代现行的聚乙烯和聚丙烯食品包装材料。当添加纳米材料时,这些聚合物可以是活性/智能的。与基于石油的生产相比,该过程可以通过糖工业废碳显著降低生产食品包装材料的温室气体排放和能源消耗。所提出的绿色途径使糖加工有机废物的增值成为可生物降解的材料,并实现了循环经济。