Suppr超能文献

利用激光诱导等离子体光谱结合基于深度学习的诊断算法进行实时、体内皮肤癌分诊。

Real-time, in vivo skin cancer triage by laser-induced plasma spectroscopy combined with a deep learning-based diagnostic algorithm.

机构信息

R&D Center, Speclipse, Inc, Sunnyvale, California.

R&D Center, Speclipse, Inc, Sunnyvale, California.

出版信息

J Am Acad Dermatol. 2023 Jul;89(1):99-105. doi: 10.1016/j.jaad.2022.06.1166. Epub 2022 Jun 22.

Abstract

BACKGROUND

Although various skin cancer detection devices have been proposed, most of them are not used owing to their insufficient diagnostic accuracies. Laser-induced plasma spectroscopy (LIPS) can noninvasively extract biochemical information of skin lesions using an ultrashort pulsed laser.

OBJECTIVE

To investigate the diagnostic accuracy and safety of real-time noninvasive in vivo skin cancer diagnostics utilizing nondiscrete molecular LIPS combined with a deep neural network (DNN)-based diagnostic algorithm.

METHODS

In vivo LIPS spectra were acquired from 296 skin cancers (186 basal cell carcinomas, 96 squamous cell carcinomas, and 14 melanomas) and 316 benign lesions in a multisite clinical study. The diagnostic performance was validated using 10-fold cross-validations.

RESULTS

The sensitivity and specificity for differentiating skin cancers from benign lesions using LIPS and the DNN-based algorithm were 94.6% (95% CI: 92.0%-97.2%) and 88.9% (95% CI: 85.5%-92.4%), respectively. No adverse events, including macroscopic or microscopic visible marks or pigmentation due to laser irradiation, were observed.

LIMITATIONS

The diagnostic performance was evaluated using a limited data set. More extensive clinical studies are needed to validate these results.

CONCLUSIONS

This LIPS system with a DNN-based diagnostic algorithm is a promising tool to distinguish skin cancers from benign lesions with high diagnostic accuracy in real clinical settings.

摘要

背景

虽然已经提出了各种皮肤癌检测设备,但由于其诊断准确性不足,大多数设备并未得到应用。激光诱导等离子体光谱(LIPS)可以使用超短脉冲激光无创地提取皮肤病变的生化信息。

目的

研究利用非离散分子 LIPS 结合基于深度神经网络(DNN)的诊断算法实时非侵入性体内皮肤癌诊断的诊断准确性和安全性。

方法

在一项多中心临床研究中,从 296 例皮肤癌(186 例基底细胞癌、96 例鳞状细胞癌和 14 例黑色素瘤)和 316 例良性病变中获取体内 LIPS 光谱。使用 10 倍交叉验证验证诊断性能。

结果

使用 LIPS 和基于 DNN 的算法区分皮肤癌和良性病变的敏感性和特异性分别为 94.6%(95%CI:92.0%-97.2%)和 88.9%(95%CI:85.5%-92.4%)。未观察到因激光照射导致的肉眼或微观可见标记或色素沉着等不良反应。

局限性

诊断性能是使用有限的数据集评估的。需要更广泛的临床研究来验证这些结果。

结论

该具有 DNN 诊断算法的 LIPS 系统是一种有前途的工具,可在真实临床环境中以高诊断准确性区分皮肤癌和良性病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验