Suppr超能文献

海洛因相关过量用药事件的空间聚集性:俄亥俄州辛辛那提市的案例研究。

Spatial clustering of heroin-related overdose incidents: a case study in Cincinnati, Ohio.

机构信息

Data Science, Bowling Green State University, 221 Hayes Hall, Bowling Green, OH, 43403, USA.

Faculty of Public and Allied Health, Bowling Green State University, 111 Health and Human Services Building, Bowling Green, OH, 43403, USA.

出版信息

BMC Public Health. 2022 Jun 25;22(1):1253. doi: 10.1186/s12889-022-13557-3.

Abstract

BACKGROUND

Drug overdose is one of the top leading causes of accidental death in the U.S., largely due to the opioid epidemic. Although the opioid epidemic is a nationwide issue, it has not affected the nation uniformly.

METHODS

We combined multiple data sources, including emergency medical service response, American Community Survey data, and health facilities datasets to analyze distributions of heroin-related overdose incidents in Cincinnati, Ohio at the census block group level. The Ripley's K function and the local Moran's I statistics were performed to examine geographic variation patterns in heroin-related overdose incidents within the study area. Then, conditional cluster maps were plotted to examine a relationship between heroin-related incident rates and sociodemographic characteristics of areas as well as the resources for opioid use disorder treatment.

RESULTS

The global spatial analysis indicated that there was a clustered pattern of heroin-related overdose incident rates at every distance across the study area. The univariate local spatial analysis identified 7 hot spot clusters, 27 cold spot clusters, and 1 outlier cluster. Conditional cluster maps showed characteristics of neighborhoods with high heroin overdose rates, such as a higher crime rate, a high percentage of the male, a high poverty level, a lower education level, and a lower income level. The hot spots in the Southwest areas of Cincinnati had longer distances to opioid treatment programs and buprenorphine prescribing physicians than the median, while the hot spots in the South-Central areas of the city had shorter distances to those health resources.

CONCLUSIONS

Our study showed that the opioid epidemic disproportionately affected Cincinnati. Multi-phased spatial clustering models based on various data sources can be useful to identify areas that require more policy attention and targeted interventions to alleviate high heroin-related overdose rates.

摘要

背景

药物过量是美国意外死亡的首要原因之一,主要是由于阿片类药物泛滥。尽管阿片类药物泛滥是一个全国性问题,但它并没有对全国产生统一的影响。

方法

我们结合了多个数据源,包括紧急医疗服务反应、美国社区调查数据和卫生设施数据集,以分析俄亥俄州辛辛那提市普查街区组层面的与海洛因相关的过量用药事件的分布情况。使用 Ripley's K 函数和局部 Moran's I 统计量来检验研究区域内与海洛因相关的过量用药事件的地理变异模式。然后,绘制条件聚类图,以检验与海洛因相关的事件发生率与区域的社会人口统计学特征以及阿片类药物使用障碍治疗资源之间的关系。

结果

全局空间分析表明,在研究区域内的每个距离上,都存在与海洛因相关的过量用药事件发生率的聚类模式。单变量局部空间分析确定了 7 个热点聚类、27 个冷点聚类和 1 个异常值聚类。条件聚类图显示了具有高海洛因过量率的社区特征,例如犯罪率较高、男性比例较高、贫困水平较高、教育水平较低和收入水平较低。辛辛那提市西南部的热点地区到阿片类药物治疗项目和丁丙诺啡处方医生的距离比中位数长,而城市中南部的热点地区到这些卫生资源的距离则较短。

结论

我们的研究表明,阿片类药物泛滥对辛辛那提市的影响不成比例。基于多种数据源的多阶段空间聚类模型可以用于识别需要更多政策关注和有针对性干预的地区,以减轻与海洛因相关的高过量用药率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a39/9233379/ee95b4beebc1/12889_2022_13557_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验