School of Computer Science, Hunan University of Technology, 412007, Hunan, China.
College of Life Sciences and Chemistry, Hunan University of Technology, 412007, Hunan, China.
Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac234.
Carcinomas are complex ecosystems composed of cancer, stromal and immune cells. Communication between these cells and their microenvironments induces cancer progression and causes therapy resistance. In order to improve the treatment of cancers, it is essential to quantify crosstalk between and within various cell types in a tumour microenvironment. Focusing on the coordinated expression patterns of ligands and cognate receptors, cell-cell communication can be inferred through ligand-receptor interactions (LRIs). In this manuscript, we carry out the following work: (i) introduce pipeline for ligand-receptor-mediated intercellular communication estimation from single-cell transcriptomics and list a few available LRI-related databases and visualization tools; (ii) demonstrate seven classical intercellular communication scoring strategies, highlight four types of representative intercellular communication inference methods, including network-based approaches, machine learning-based approaches, spatial information-based approaches and other approaches; (iii) summarize the evaluation and validation avenues for intercellular communication inference and analyze the advantages and limitations for the above four types of cell-cell communication methods; (iv) comment several major challenges while provide further research directions for intercellular communication analysis in the tumour microenvironments. We anticipate that this work helps to better understand intercellular crosstalk and to further develop powerful cell-cell communication estimation tools for tumor-targeted therapy.
癌是由癌症、基质和免疫细胞组成的复杂生态系统。这些细胞与它们的微环境之间的交流诱导癌症进展并导致治疗耐药性。为了改善癌症的治疗效果,必须定量评估肿瘤微环境中各种细胞类型之间和内部的串扰。通过配体-受体相互作用(LRIs),可以聚焦于配体和同源受体的协调表达模式,推断细胞间通讯。在本文中,我们进行了以下工作:(i)从单细胞转录组学中引入了配体-受体介导的细胞间通讯估计的管道,并列出了一些可用的 LRI 相关数据库和可视化工具;(ii)展示了七种经典的细胞间通讯评分策略,强调了四种代表性的细胞间通讯推断方法,包括基于网络的方法、基于机器学习的方法、基于空间信息的方法和其他方法;(iii)总结了细胞间通讯推断的评估和验证途径,并分析了上述四种细胞-细胞通讯方法的优缺点;(iv)评论了一些主要的挑战,同时为肿瘤微环境中的细胞间通讯分析提供了进一步的研究方向。我们预计,这项工作有助于更好地理解细胞间串扰,并进一步开发用于肿瘤靶向治疗的强大细胞-细胞通讯估计工具。