Suppr超能文献

基于空间多组学数据的基因调控网络构建及其在肿瘤边界分析中的应用

Construction of Gene Regulatory Networks Based on Spatial Multi-Omics Data and Application in Tumor-Boundary Analysis.

作者信息

Du Yiwen, Xu Kun, Zhang Siwen, Chen Lanming, Liu Zhenhao, Xie Lu

机构信息

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

Shanghai-MOST Key Laboratory of Health and Disease Genomics, The Department of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200237, China.

出版信息

Genes (Basel). 2025 Jul 13;16(7):821. doi: 10.3390/genes16070821.

Abstract

BACKGROUND/OBJECTIVES: Cell-cell communication (CCC) is a critical process within the tumor microenvironment, governing regulatory interactions between cancer cells and other cellular subpopulations. Aiming to improve the accuracy and completeness of intercellular gene-regulatory network inference, we constructed a novel spatial-resolved gene-regulatory network framework (spGRN).

METHODS

Firstly, the spatial multi-omics data of colorectal cancer (CRC) patients were analyzed. We precisely located the tumor boundaries and then systematically constructed the spGRN framework to study the network regulation. Subsequently, the key signaling molecules obtained by the spGRN were identified and further validated by the spatial-proteomics dataset.

RESULTS

Through the constructed spatial gene regulatory network, we found that in the communication with malignant cells, the highly expressed ligands and and receptors and in fibroblasts can promote tumor proliferation, and the highly expressed ligands in plasma cells play an important role in regulating inflammatory responses. Further, validation of the key signaling molecules by the spatial-proteomics dataset highlighted the role of these genes in mediating the regulation of boundary-related cells. Furthermore, we applied the spGRN to publicly available single-cell and spatial-transcriptomics datasets from three other cancer types. The results demonstrate that ITGB1 and its target genes FOS/JUN were commonly expressed in all four cancer types, indicating their potential as pan-cancer therapeutic targets.

CONCLUSION

the spGRN was proven to be a useful tool to select signal molecules as potential biomarkers or valuable therapeutic targets.

摘要

背景/目的:细胞间通讯(CCC)是肿瘤微环境中的一个关键过程,它控制着癌细胞与其他细胞亚群之间的调节相互作用。为了提高细胞间基因调控网络推断的准确性和完整性,我们构建了一个新的空间分辨基因调控网络框架(spGRN)。

方法

首先,分析了结直肠癌(CRC)患者的空间多组学数据。我们精确确定了肿瘤边界,然后系统地构建了spGRN框架来研究网络调控。随后,鉴定了spGRN获得的关键信号分子,并通过空间蛋白质组学数据集进行了进一步验证。

结果

通过构建的空间基因调控网络,我们发现,在与恶性细胞的通讯中,成纤维细胞中高表达的配体和以及受体和可以促进肿瘤增殖,浆细胞中高表达的配体在调节炎症反应中起重要作用。此外,通过空间蛋白质组学数据集对关键信号分子的验证突出了这些基因在介导边界相关细胞调节中的作用。此外,我们将spGRN应用于来自其他三种癌症类型的公开单细胞和空间转录组学数据集。结果表明,整合素β1(ITGB1)及其靶基因FOS/JUN在所有四种癌症类型中均普遍表达,表明它们作为泛癌治疗靶点的潜力。

结论

spGRN被证明是一种有用的工具,可用于选择信号分子作为潜在的生物标志物或有价值的治疗靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验