Suppr超能文献

病例-队列研究中的风险比和风险差估计。

Risk Ratio and Risk Difference Estimation in Case-cohort Studies.

机构信息

Department of Data Science, The Institute of Statistical Mathematics.

Department of Statistics, Radiation Effects Research Foundation.

出版信息

J Epidemiol. 2023 Oct 5;33(10):508-513. doi: 10.2188/jea.JE20210509. Epub 2022 Oct 19.

Abstract

BACKGROUND

In case-cohort studies with binary outcomes, ordinary logistic regression analyses have been widely used because of their computational simplicity. However, the resultant odds ratio estimates cannot be interpreted as relative risk measures unless the event rate is low. The risk ratio and risk difference are more favorable outcome measures that are directly interpreted as effect measures without the rare disease assumption.

METHODS

We provide pseudo-Poisson and pseudo-normal linear regression methods for estimating risk ratios and risk differences in analyses of case-cohort studies. These multivariate regression models are fitted by weighting the inverses of sampling probabilities. Also, the precisions of the risk ratio and risk difference estimators can be improved using auxiliary variable information, specifically by adapting the calibrated or estimated weights, which are readily measured on all samples from the whole cohort. Finally, we provide computational code in R (R Foundation for Statistical Computing, Vienna, Austria) that can easily perform these methods.

RESULTS

Through numerical analyses of artificially simulated data and the National Wilms Tumor Study data, accurate risk ratio and risk difference estimates were obtained using the pseudo-Poisson and pseudo-normal linear regression methods. Also, using the auxiliary variable information from the whole cohort, precisions of these estimators were markedly improved.

CONCLUSION

The ordinary logistic regression analyses may provide uninterpretable effect measure estimates, and the risk ratio and risk difference estimation methods are effective alternative approaches for case-cohort studies. These methods are especially recommended under situations in which the event rate is not low.

摘要

背景

在二分类结局的病例-队列研究中,由于其计算简单,通常使用普通逻辑回归分析。然而,所得的优势比估计值不能解释为相对风险度量,除非事件发生率低。风险比和风险差是更有利的结局指标,可以直接解释为效应度量,而无需稀有疾病假设。

方法

我们提供了用于估计病例-队列研究中风险比和风险差的拟泊松和拟正态线性回归方法。这些多变量回归模型通过加权抽样概率的倒数来拟合。此外,通过利用辅助变量信息(特别是通过适应校准或估计的权重)可以提高风险比和风险差估计量的精度,这些权重可以很容易地从整个队列的所有样本中测量。最后,我们提供了 R 中的计算代码(奥地利维也纳的 R 基金会统计计算),可以轻松执行这些方法。

结果

通过对人工模拟数据和国家威尔姆斯肿瘤研究数据的数值分析,使用拟泊松和拟正态线性回归方法得到了准确的风险比和风险差估计值。此外,通过使用整个队列的辅助变量信息,这些估计量的精度显著提高。

结论

普通逻辑回归分析可能提供不可解释的效应度量估计值,风险比和风险差估计方法是病例-队列研究的有效替代方法。这些方法在事件发生率不低的情况下尤其推荐使用。

相似文献

1
Risk Ratio and Risk Difference Estimation in Case-cohort Studies.
J Epidemiol. 2023 Oct 5;33(10):508-513. doi: 10.2188/jea.JE20210509. Epub 2022 Oct 19.
2
Analysis of case-cohort designs with binary outcomes: Improving efficiency using whole-cohort auxiliary information.
Stat Methods Med Res. 2017 Apr;26(2):691-706. doi: 10.1177/0962280214556175. Epub 2014 Oct 26.
4
Estimating risk ratio from any standard epidemiological design by doubling the cases.
BMC Med Res Methodol. 2022 May 30;22(1):157. doi: 10.1186/s12874-022-01636-3.
5
Variance Estimation for Logistic Regression in Case-cohort Studies.
J Epidemiol. 2024 Jan 5;34(1):38-40. doi: 10.2188/jea.JE20220251. Epub 2023 May 31.
7
Analysis of epidemiologic case-base studies for binary data.
Stat Med. 1989 Oct;8(10):1241-54. doi: 10.1002/sim.4780081008.
8
Using the whole cohort in the analysis of countermatched samples.
Biometrics. 2016 Jun;72(2):382-91. doi: 10.1111/biom.12419. Epub 2015 Sep 22.
10
[Odds Ratio: review about the meaning of an epidemiological measure].
Acta Med Port. 2013 Sep-Oct;26(5):505-10. Epub 2013 Oct 31.

引用本文的文献

本文引用的文献

2
Analysis of case-cohort designs with binary outcomes: Improving efficiency using whole-cohort auxiliary information.
Stat Methods Med Res. 2017 Apr;26(2):691-706. doi: 10.1177/0962280214556175. Epub 2014 Oct 26.
3
Connections between survey calibration estimators and semiparametric models for incomplete data.
Int Stat Rev. 2011 Aug;79(2):200-220. doi: 10.1111/j.1751-5823.2011.00138.x.
4
Using full-cohort data in nested case-control and case-cohort studies by multiple imputation.
Stat Med. 2013 Oct 15;32(23):4021-43. doi: 10.1002/sim.5818. Epub 2013 Apr 23.
5
An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.
Multivariate Behav Res. 2011 May;46(3):399-424. doi: 10.1080/00273171.2011.568786. Epub 2011 Jun 8.
6
Multiple imputation analysis of case-cohort studies.
Stat Med. 2011 Jun 15;30(13):1595-607. doi: 10.1002/sim.4130. Epub 2011 Feb 24.
8
Using the whole cohort in the analysis of case-cohort data.
Am J Epidemiol. 2009 Jun 1;169(11):1398-405. doi: 10.1093/aje/kwp055. Epub 2009 Apr 8.
9
A modified least-squares regression approach to the estimation of risk difference.
Am J Epidemiol. 2007 Dec 1;166(11):1337-44. doi: 10.1093/aje/kwm223. Epub 2007 Sep 12.
10
A modified poisson regression approach to prospective studies with binary data.
Am J Epidemiol. 2004 Apr 1;159(7):702-6. doi: 10.1093/aje/kwh090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验