Ali Hazim M, Ibrahim Samia M, Abo Zeid Essam F, Al-Hossainy Ahmed F, El-Aal Mohamed Abd
Department of Chemistry, College of Science, Jouf University P.O. Box 2014 Sakaka Aljouf Saudi Arabia.
Chemistry Department, Faculty of Science, New Valley University El-Kharga 72511 New Valley Egypt.
RSC Adv. 2022 Jun 6;12(26):16496-16509. doi: 10.1039/d2ra02515a. eCollection 2022 Jun 1.
In this work, Cu NPs were loaded at a fixed percentage (5 wt%) on 1D, (1D + 0D) and 0D ZnO nanostructures to investigate the effect of the support morphology on the reduction of organic pollutants in water. The synthesized materials were characterized by high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The results reveal that the loading of Cu NPs decreases the optical band gap, and a slight change in the crystallite sizes increases the specific surface area value of the nanocomposites. The TEM images reveal that 1D ZnO has an average width of 44.7 nm and an average length of 211 nm, while 0D ZnO has an average diameter of 54.5 nm. The HR-TEM and XPS data confirm the loading of metallic Cu NPs on the surface of the ZnO nanostructures. The pure ZnO and nanocomposites were tested for 4-nitrophenol (4-NP) reduction in the presence of NaBH at room temperature. The obtained results show that pure ZnO nanostructures have no catalytic performance, while the nanocomposites showed good catalytic activities. The catalytic reduction efficiency of 4-NP was found to follow the order of Cu/0DZnO > Cu/(1D + 0D)ZnO > Cu/1DZnO. The complete reduction of 4-NP has been observed to be achievable within 60 s using the Cu/0DZnO nanocomposite, with a value of 8.42 min and good recyclability of up to five cycles. This nanocomposite was then applied in the reduction of organic dyes in water; it was found that the reduction rate constants for the methylene blue, Congo red, and acriflavine hydrochloride dyes were 1.4 min, 1.2 min, and 3.81 min, respectively. The high catalytic performance of this nanocomposite may be due to the small particle size, high specific surface area, and the high dispersion of Cu NPs on the surface of ZnO.
在本工作中,将铜纳米颗粒以固定百分比(5 wt%)负载在一维、(一维 + 零维)和零维氧化锌纳米结构上,以研究载体形态对水中有机污染物还原的影响。通过高分辨率透射电子显微镜(HR-TEM)、紫外可见光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、N吸附-脱附和X射线光电子能谱(XPS)对合成材料进行了表征。结果表明,铜纳米颗粒的负载降低了光学带隙,微晶尺寸的轻微变化增加了纳米复合材料的比表面积值。TEM图像显示,一维氧化锌的平均宽度为44.7 nm,平均长度为211 nm,而零维氧化锌的平均直径为54.5 nm。HR-TEM和XPS数据证实了金属铜纳米颗粒负载在氧化锌纳米结构的表面。在室温下,在硼氢化钠存在的情况下,对纯氧化锌和纳米复合材料进行了4-硝基苯酚(4-NP)还原测试。所得结果表明,纯氧化锌纳米结构没有催化性能,而纳米复合材料表现出良好的催化活性。发现4-NP的催化还原效率遵循Cu/零维氧化锌 > Cu/(一维 + 零维)氧化锌 > Cu/一维氧化锌的顺序。使用Cu/零维氧化锌纳米复合材料在60 s内可实现4-NP的完全还原, 值为8.42 min,并且具有高达五个循环的良好可回收性。然后将该纳米复合材料应用于水中有机染料的还原;发现亚甲基蓝、刚果红和盐酸吖啶黄染料的还原速率常数分别为1.4 min、1.2 min和3.81 min。这种纳米复合材料的高催化性能可能归因于小粒径、高比表面积以及铜纳米颗粒在氧化锌表面的高度分散。