文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A comparative study of Cu-anchored 0D and 1D ZnO nanostructures for the reduction of organic pollutants in water.

作者信息

Ali Hazim M, Ibrahim Samia M, Abo Zeid Essam F, Al-Hossainy Ahmed F, El-Aal Mohamed Abd

机构信息

Department of Chemistry, College of Science, Jouf University P.O. Box 2014 Sakaka Aljouf Saudi Arabia.

Chemistry Department, Faculty of Science, New Valley University El-Kharga 72511 New Valley Egypt.

出版信息

RSC Adv. 2022 Jun 6;12(26):16496-16509. doi: 10.1039/d2ra02515a. eCollection 2022 Jun 1.


DOI:10.1039/d2ra02515a
PMID:35754865
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9168830/
Abstract

In this work, Cu NPs were loaded at a fixed percentage (5 wt%) on 1D, (1D + 0D) and 0D ZnO nanostructures to investigate the effect of the support morphology on the reduction of organic pollutants in water. The synthesized materials were characterized by high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The results reveal that the loading of Cu NPs decreases the optical band gap, and a slight change in the crystallite sizes increases the specific surface area value of the nanocomposites. The TEM images reveal that 1D ZnO has an average width of 44.7 nm and an average length of 211 nm, while 0D ZnO has an average diameter of 54.5 nm. The HR-TEM and XPS data confirm the loading of metallic Cu NPs on the surface of the ZnO nanostructures. The pure ZnO and nanocomposites were tested for 4-nitrophenol (4-NP) reduction in the presence of NaBH at room temperature. The obtained results show that pure ZnO nanostructures have no catalytic performance, while the nanocomposites showed good catalytic activities. The catalytic reduction efficiency of 4-NP was found to follow the order of Cu/0DZnO > Cu/(1D + 0D)ZnO > Cu/1DZnO. The complete reduction of 4-NP has been observed to be achievable within 60 s using the Cu/0DZnO nanocomposite, with a value of 8.42 min and good recyclability of up to five cycles. This nanocomposite was then applied in the reduction of organic dyes in water; it was found that the reduction rate constants for the methylene blue, Congo red, and acriflavine hydrochloride dyes were 1.4 min, 1.2 min, and 3.81 min, respectively. The high catalytic performance of this nanocomposite may be due to the small particle size, high specific surface area, and the high dispersion of Cu NPs on the surface of ZnO.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/7e7cadbefcbb/d2ra02515a-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/5ba4c8b9f561/d2ra02515a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/717eb569f2c1/d2ra02515a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/b797fdbeeb8e/d2ra02515a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/0de855929d7d/d2ra02515a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/a065f484bdcf/d2ra02515a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/345f4856383a/d2ra02515a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/cf1505604571/d2ra02515a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/1c35e2604b4e/d2ra02515a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/6de6d4b14d01/d2ra02515a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/7e7cadbefcbb/d2ra02515a-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/5ba4c8b9f561/d2ra02515a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/717eb569f2c1/d2ra02515a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/b797fdbeeb8e/d2ra02515a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/0de855929d7d/d2ra02515a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/a065f484bdcf/d2ra02515a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/345f4856383a/d2ra02515a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/cf1505604571/d2ra02515a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/1c35e2604b4e/d2ra02515a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/6de6d4b14d01/d2ra02515a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6291/9168830/7e7cadbefcbb/d2ra02515a-f10.jpg

相似文献

[1]
A comparative study of Cu-anchored 0D and 1D ZnO nanostructures for the reduction of organic pollutants in water.

RSC Adv. 2022-6-6

[2]
Cu-Doped 1D Hydroxyapatite as a Highly Active Catalyst for the Removal of 4-Nitrophenol and Dyes from Water.

ACS Omega. 2022-7-21

[3]
Catalytic Use toward the Redox Reaction of Toxic Industrial Wastes in Innocuous Aqueous Medium and Antibacterial Activity of Novel Cu Ag Zn O Nanocomposites.

ACS Omega. 2021-10-28

[4]
Photocatalytic Degradation of Methylene Blue Using N-Doped ZnO/Carbon Dot (N-ZnO/CD) Nanocomposites Derived from Organic Soybean.

ACS Omega. 2023-4-17

[5]
Facile synthesis of Cu NPs@FeO-lignosulfonate: Study of catalytic and antibacterial/antioxidant activities.

Food Chem Toxicol. 2022-10

[6]
Coupling ZnO with CuO for efficient organic pollutant removal.

Environ Sci Pollut Res Int. 2023-6

[7]
Facile green synthesis of Ag-Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions.

J Environ Manage. 2020-2-19

[8]
Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye.

Heliyon. 2020-9-23

[9]
Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.

Phys Chem Chem Phys. 2015-10-14

[10]
Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A comparative study of methyl orange dye degradation in aqueous solution.

Heliyon. 2023-5-22

引用本文的文献

[1]
Mechanism of uranium(vi) sorption on α-aminophosphonate sorbents: multimodal spectroscopy and computational study.

RSC Adv. 2025-8-8

[2]
Chitosan-Nanoparticles Mitigate Cadmium Chloride Hepatorenal Toxicity in BALB/C Mice Via Amendment of Nrf2/HO-1 and NF-κB/iNOS Signaling Pathways.

Biol Trace Elem Res. 2025-8-25

[3]
Potential Therapeutic Effect of ZnO/CuO Nanocomposite as an Acaricidal, Immunostimulant, and Antioxidant in Rabbits.

Vet Sci. 2025-4-4

[4]
Evaluating the Toxicity of Synthetic Hydroxyapatite Nanoparticles (HAPNPs) against Pulse Beetle, (Insecta: Coleoptera).

ACS Omega. 2025-3-3

[5]
Black sand nanoparticles and heat stress impacts the neurological and oxidative stress indices and splenic-renal histology of Clarias gariepinus.

Sci Rep. 2024-9-23

[6]
A novel pharmacological strategy using nanoparticles with glutathione and virgin coconut oil to treat gentamicin-induced acute renal failure in rats.

Naunyn Schmiedebergs Arch Pharmacol. 2025-1

[7]
PLA/CS-ZnO bionanocomposite for rapid catalytic reduction of nitrophenol compounds as a heterogeneous nanocatalyst.

Anal Sci. 2024-4

[8]
Green Synthesis of TiO Using Hook.. Leaf Extract for Efficient Removal of Methylene Blue Dye.

ACS Omega. 2023-11-10

[9]
Optically amended biosynthesized crystalline copper-doped ZnO for enhanced antibacterial activity.

RSC Adv. 2023-8-21

[10]
Cu/CuO-Doped ZnO Nanocomposites via Solution Combustion Synthesis for Catalytic 4-Nitrophenol Reduction.

ACS Omega. 2023-3-2

本文引用的文献

[1]
Highly efficient catalytic/sonocatalytic reduction of 4-nitrophenol and antibacterial activity through a bifunctional Ag/ZnO nanohybrid material prepared a sodium alginate method.

Nanoscale Adv. 2019-7-2

[2]
Green synthesis of a Cu/MgO nanocomposite by  L. extract and investigation of its catalytic activity in the reduction of methylene blue, congo red and nitro compounds in aqueous media.

RSC Adv. 2018-1-18

[3]
Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-11-15

[4]
Ag@ZnO/MWCNT ternary nanocomposite as an active and stable catalyst for the 4-nitrophenol reduction in water.

Nanotechnology. 2021-5-14

[5]
Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance.

Membranes (Basel). 2021-2-27

[6]
Ultrafine copper nanoparticles anchored on reduced graphene oxide present excellent catalytic performance toward 4-nitrophenol reduction.

J Colloid Interface Sci. 2020-4-15

[7]
Synergism of transition metal (Co, Ni, Fe, Mn) nanoparticles and "active support" FeO@C for catalytic reduction of 4-nitrophenol.

Sci Total Environ. 2020-4-10

[8]
Graphene-Modified ZnO Nanostructures for Low-Temperature NO Sensing.

ACS Omega. 2019-2-26

[9]
Preparation of ZnO Nanoparticles with High Dispersibility Based on Oriented Attachment (OA) Process.

Nanoscale Res Lett. 2019-6-20

[10]
Excellent Tribological Properties of Lower Reduced Graphene Oxide Content Copper Composite by Using a One-Step Reduction Molecular-Level Mixing Process.

Materials (Basel). 2018-4-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索