Sabbar Yassine, Kiouach Driss, Rajasekar S P
LPAIS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
Department of Mathematics, Government Arts College for Women, Nilakottai, Tamilnadu 624202 India.
Int J Dyn Control. 2023;11(1):122-135. doi: 10.1007/s40435-022-00981-x. Epub 2022 Jun 22.
Several studies have previously been conducted on the dynamics of probabilistic epidemic models driven by Lévy disorder. All of these works have used the Poisson counting process with finite Lévy measures. However, this scope disregards a considerable category of correlated Lévy jump processes governed by an infinite Lévy measure. In this research, we take into consideration this general framework applied to an epidemic model with a quarantine strategy. Under an appropriate hypothetical setting, we infer the exact threshold value between the ergodicity and the disease disappearance. Our analysis completes the work presented by Privault and Wang (J Nonlinear Sci 31(1):1-28, 2021) and puts forward a novel analytical aspect to deal with other stochastic models in several areas. As a numerical application, we implement the algorithm of Rosinski (Stoch Process Appl 117:677-707, 2007) for tempered stable Lévy processes with an infinite Lévy measure.
此前已经有多项关于由 Lévy 无序驱动的概率性流行病模型动力学的研究。所有这些研究都使用了具有有限 Lévy 测度的泊松计数过程。然而,这种范围忽略了由无限 Lévy 测度控制的相当一类相关 Lévy 跳跃过程。在本研究中,我们考虑了应用于具有检疫策略的流行病模型的这个一般框架。在适当的假设设定下,我们推断出遍历性和疾病消失之间的确切阈值。我们的分析完善了 Privault 和 Wang(《非线性科学杂志》31(1):1 - 28,2021)所呈现的工作,并为处理多个领域的其他随机模型提出了一个新的分析视角。作为数值应用,我们针对具有无限 Lévy 测度的 tempered 稳定 Lévy 过程实现了 Rosinski(《随机过程及其应用》117:677 - 707,2007)的算法。