Suppr超能文献

随机不等式及其在具有跳跃的新型SIVS流行病模型动力学分析中的应用。

Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps.

作者信息

Leng Xiaona, Feng Tao, Meng Xinzhu

机构信息

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590 P.R. China.

State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590 P.R. China.

出版信息

J Inequal Appl. 2017;2017(1):138. doi: 10.1186/s13660-017-1418-8. Epub 2017 Jun 15.

Abstract

This paper proposes a new nonlinear stochastic SIVS epidemic model with double epidemic hypothesis and Lévy jumps. The main purpose of this paper is to investigate the threshold dynamics of the stochastic SIVS epidemic model. By using the technique of a series of stochastic inequalities, we obtain sufficient conditions for the persistence in mean and extinction of the stochastic system and the threshold which governs the extinction and the spread of the epidemic diseases. Finally, this paper describes the results of numerical simulations investigating the dynamical effects of stochastic disturbance. Our results significantly improve and generalize the corresponding results in recent literatures. The developed theoretical methods and stochastic inequalities technique can be used to investigate the high-dimensional nonlinear stochastic differential systems.

摘要

本文提出了一种具有双重流行假设和 Lévy 跳跃的新型非线性随机 SIVS 流行病模型。本文的主要目的是研究随机 SIVS 流行病模型的阈值动力学。通过使用一系列随机不等式技术,我们获得了随机系统均值持续存在和灭绝的充分条件以及控制流行病灭绝和传播的阈值。最后,本文描述了研究随机扰动动力学效应的数值模拟结果。我们的结果显著改进并推广了近期文献中的相应结果。所发展的理论方法和随机不等式技术可用于研究高维非线性随机微分系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/113a/5487947/3cfa49995c70/13660_2017_1418_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验