Zhou Baoquan, Jiang Daqing, Dai Yucong, Hayat Tasawar
College of Science, China University of Petroleum (East China), Qingdao, 266580 People's Republic of China.
Nonlinear Analysis and Applied Mathematics(NAAM)-Research Group, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia.
Nonlinear Dyn. 2021;105(1):931-955. doi: 10.1007/s11071-020-06151-y. Epub 2021 Jun 8.
Recently, considering the temporary immunity of individuals who have recovered from certain infectious diseases, Liu et al. (Phys A Stat Mech Appl 551:124152, 2020) proposed and studied a stochastic susceptible-infected-recovered-susceptible model with logistic growth. For a more realistic situation, the effects of quarantine strategies and stochasticity should be taken into account. Hence, our paper focuses on a stochastic susceptible-infected-quarantined-recovered-susceptible epidemic model with temporary immunity. First, by means of the Khas'minskii theory and Lyapunov function approach, we construct a critical value corresponding to the basic reproduction number of the deterministic system. Moreover, we prove that there is a unique ergodic stationary distribution if . Focusing on the results of Zhou et al. (Chaos Soliton Fractals 137:109865, 2020), we develop some suitable solving theories for the general four-dimensional Fokker-Planck equation. The key aim of the present study is to obtain the explicit density function expression of the stationary distribution under . It should be noted that the existence of an ergodic stationary distribution together with the unique exact probability density function can reveal all the dynamical properties of disease persistence in both epidemiological and statistical aspects. Next, some numerical simulations together with parameter analyses are shown to support our theoretical results. Last, through comparison with other articles, results are discussed and the main conclusions are highlighted.
最近,考虑到从某些传染病中康复的个体的暂时免疫力,刘等人(《物理A:统计力学及其应用》551:124152,2020)提出并研究了一个具有逻辑斯蒂增长的随机易感-感染-康复-易感模型。为了更贴近现实情况,应考虑隔离策略和随机性的影响。因此,我们的论文聚焦于一个具有暂时免疫力的随机易感-感染-隔离-康复-易感传染病模型。首先,借助哈斯明斯基理论和李雅普诺夫函数方法,我们构建了一个与确定性系统的基本再生数相对应的临界值。此外,我们证明如果 ,则存在唯一的遍历平稳分布。基于周等人(《混沌、孤子与分形》137:109865,2020)的研究结果,我们为一般的四维福克-普朗克方程发展了一些合适的求解理论。本研究的关键目标是在 条件下获得平稳分布的显式密度函数表达式。应当指出,遍历平稳分布的存在以及唯一精确的概率密度函数能够在流行病学和统计学两个方面揭示疾病持续存在的所有动力学性质。接下来,展示了一些数值模拟以及参数分析以支持我们的理论结果。最后,通过与其他文章进行比较,对结果进行了讨论并突出了主要结论。