Suppr超能文献

通过基因突变策略探究生物膜的生长和力学性能。

Probing the growth and mechanical properties of biofilms through genetic mutation strategies.

作者信息

Liu Suying, Huang Jiaofang, Zhang Chen, Wang Lihua, Fan Chunhai, Zhong Chao

机构信息

Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Synth Syst Biotechnol. 2022 Jun 3;7(3):965-971. doi: 10.1016/j.synbio.2022.05.005. eCollection 2022 Sep.

Abstract

Bacterial communities form biofilms on various surfaces by synthesizing a cohesive and protective extracellular matrix, and these biofilms protect microorganisms against harsh environmental conditions. is a widely used experimental species, and its biofilms are used as representative models of beneficial biofilms. Specifically, biofilms are known to be rich in extracellular polymeric substances (EPS) and other biopolymers such as DNA and proteins like the amyloid protein TasA and the hydrophobic protein BslA. These materials, which form an interconnected, cohesive, three-dimensional polymer network, provide the mechanical stability of biofilms and mediate their adherence to surfaces among other functional contributions. Here, we explored how genetically-encoded components specifically contribute to regulate the growth status, mechanical properties, and antibiotic resistance of biofilms, thereby establishing a solid empirical basis for understanding how various genetic engineering efforts are likely to affect the structure and function of biofilms. We noted discrete contributions to biofilm morphology, mechanical properties, and survival from major biofilm components such as EPS, TasA and BslA. For example, EPS plays an important role in maintaining the stability of the mechanical properties and the antibiotic resistance of biofilms, whereas BslA has a significant impact on the resolution that can be obtained for printing applications. This work provides a deeper understanding of the internal interactions of biofilm components through systematic genetic manipulations. It thus not only broadens the application prospects of beneficial biofilms, but also serves as the basis of future strategies for targeting and effectively removing harmful biofilms.

摘要

细菌群落通过合成一种有粘性且具保护作用的细胞外基质在各种表面形成生物膜,这些生物膜可保护微生物免受恶劣环境条件的影响。 是一种广泛使用的实验物种,其生物膜被用作有益生物膜的代表性模型。具体而言,已知 生物膜富含细胞外聚合物(EPS)和其他生物聚合物,如DNA以及诸如淀粉样蛋白TasA和疏水蛋白BslA等蛋白质。这些形成相互连接、有粘性的三维聚合物网络的物质,为生物膜提供机械稳定性,并在其他功能作用中介导其对表面的粘附。在此,我们探究了基因编码成分如何具体有助于调节 生物膜的生长状态、机械性能和抗生素抗性,从而为理解各种基因工程手段可能如何影响生物膜的结构和功能奠定坚实的实证基础。我们注意到主要生物膜成分如EPS、TasA和BslA对生物膜形态、机械性能和存活有不同的贡献。例如,EPS在维持生物膜机械性能的稳定性和抗生素抗性方面起重要作用,而BslA对打印应用可获得的分辨率有显著影响。这项工作通过系统的基因操作更深入地理解了生物膜成分的内部相互作用。因此,它不仅拓宽了有益生物膜的应用前景,也为未来靶向并有效去除有害生物膜的策略奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/879f/9194759/1d47e3736952/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验