Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Nano Lett. 2021 Feb 10;21(3):1352-1359. doi: 10.1021/acs.nanolett.0c04100. Epub 2021 Jan 28.
Microbes are critical drivers of all ecosystems and many biogeochemical processes, yet little is known about how the three-dimensional (3D) organization of these dynamic organisms contributes to their overall function. To probe how biofilm structure affects microbial activity, we developed a technique for patterning microbes in 3D geometries using projection stereolithography to bioprint microbes within hydrogel architectures. Bacteria were printed and monitored for biomass accumulation, demonstrating postprint viability of cells using this technique. We verified our ability to integrate biological and geometric complexity by fabricating a printed biofilm with two strains expressing different fluorescence. Finally, we examined the target application of microbial absorption of metal ions to investigate geometric effects on both the metal sequestration efficiency and the uranium sensing capability of patterned engineered strains. This work represents the first demonstration of the stereolithographic printing of microbials and presents opportunities for future work of engineered biofilms and other complex 3D structured cultures.
微生物是所有生态系统和许多生物地球化学过程的关键驱动因素,但人们对这些动态生物的三维(3D)组织如何促进其整体功能知之甚少。为了探究生物膜结构如何影响微生物活性,我们开发了一种使用投影立体光刻技术在 3D 几何形状中对微生物进行图案化的技术,以便在水凝胶结构内生物打印微生物。我们打印了细菌并监测其生物量积累,证明了该技术对细胞的后打印活力。我们通过制造具有两种表达不同荧光的菌株的打印生物膜验证了我们整合生物和几何复杂性的能力。最后,我们研究了微生物吸收金属离子的目标应用,以调查几何形状对模式化工程菌株的金属螯合效率和铀感应能力的影响。这项工作代表了微生物立体光刻印刷的首次演示,并为工程生物膜和其他复杂 3D 结构培养物的未来工作提供了机会。