Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
Oncode Institute, 3521 AL Utrecht, The Netherlands.
Bioinformatics. 2022 Jun 24;38(Suppl 1):i212-i219. doi: 10.1093/bioinformatics/btac228.
Pleiotropic SNPs are associated with multiple traits. Such SNPs can help pinpoint biological processes with an effect on multiple traits or point to a shared etiology between traits. We present PolarMorphism, a new method for the identification of pleiotropic SNPs from genome-wide association studies (GWAS) summary statistics. PolarMorphism can be readily applied to more than two traits or whole trait domains. PolarMorphism makes use of the fact that trait-specific SNP effect sizes can be seen as Cartesian coordinates and can thus be converted to polar coordinates r (distance from the origin) and theta (angle with the Cartesian x-axis, in the case of two traits). r describes the overall effect of a SNP, while theta describes the extent to which a SNP is shared. r and theta are used to determine the significance of SNP sharedness, resulting in a P-value per SNP that can be used for further analysis.
We apply PolarMorphism to a large collection of publicly available GWAS summary statistics enabling the construction of a pleiotropy network that shows the extent to which traits share SNPs. We show how PolarMorphism can be used to gain insight into relationships between traits and trait domains and contrast it with genetic correlation. Furthermore, pathway analysis of the newly discovered pleiotropic SNPs demonstrates that analysis of more than two traits simultaneously yields more biologically relevant results than the combined results of pairwise analysis of the same traits. Finally, we show that PolarMorphism is more efficient and more powerful than previously published methods.
code: https://github.com/UMCUGenetics/PolarMorphism, results: 10.5281/zenodo.5844193.
Supplementary data are available at Bioinformatics online.
多效性 SNP 与多种性状相关。这些 SNP 可以帮助确定对多种性状有影响的生物学过程,或者指出性状之间的共同病因。我们提出了 PolarMorphism,这是一种从全基因组关联研究 (GWAS) 汇总统计数据中识别多效性 SNP 的新方法。PolarMorphism 可以很容易地应用于两个以上的性状或整个性状领域。PolarMorphism 利用了这样一个事实,即特定性状的 SNP 效应大小可以看作是笛卡尔坐标,因此可以转换为极坐标 r(原点距离)和 theta(在两个性状的情况下,与笛卡尔 x 轴的夹角)。r 描述了 SNP 的总体效应,而 theta 描述了 SNP 共享的程度。r 和 theta 用于确定 SNP 共享的显著性,从而为每个 SNP 生成一个可用于进一步分析的 P 值。
我们将 PolarMorphism 应用于大量公开可用的 GWAS 汇总统计数据,从而构建了一个多效性网络,显示了性状之间共享 SNP 的程度。我们展示了如何使用 PolarMorphism 深入了解性状和性状领域之间的关系,并将其与遗传相关性进行对比。此外,对新发现的多效性 SNP 进行通路分析表明,同时分析两个以上的性状比同一性状的两两分析的组合结果更能产生生物学上相关的结果。最后,我们表明 PolarMorphism 比以前发表的方法更有效和更强大。
代码:https://github.com/UMCUGenetics/PolarMorphism,结果:10.5281/zenodo.5844193。
补充数据可在 Bioinformatics 在线获得。