Suppr超能文献

机器学习决策树算法在预测 ICU 收治的危重症成年 COVID-19 患者死亡率中的作用。

Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU.

机构信息

Department of Critical Care, Dr. Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.

Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.

出版信息

J Infect Public Health. 2022 Jul;15(7):826-834. doi: 10.1016/j.jiph.2022.06.008. Epub 2022 Jun 17.

Abstract

BACKGROUND

Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently a major cause of intensive care unit (ICU) admissions globally. The role of machine learning in the ICU is evolving but currently limited to diagnostic and prognostic values. A decision tree (DT) algorithm is a simple and intuitive machine learning method that provides sequential nonlinear analysis of variables. It is simple and might be a valuable tool for bedside physicians during COVID-19 to predict ICU outcomes and help in critical decision-making like end-of-life decisions and bed allocation in the event of limited ICU bed capacities. Herein, we utilized a machine learning DT algorithm to describe the association of a predefined set of variables and 28-day ICU outcome in adult COVID-19 patients admitted to the ICU. We highlight the value of utilizing a machine learning DT algorithm in the ICU at the time of a COVID-19 pandemic.

METHODS

This was a prospective and multicenter cohort study involving 14 hospitals in Saudi Arabia. We included critically ill COVID-19 patients admitted to the ICU between March 1, 2020, and October 31, 2020. The predictors of 28-day ICU mortality were identified using two predictive models: conventional logistic regression and DT analyses.

RESULTS

There were 1468 critically ill COVID-19 patients included in the study. The 28-day ICU mortality was 540 (36.8 %), and the 90-day mortality was 600 (40.9 %). The DT algorithm identified five variables that were integrated into the algorithm to predict 28-day ICU outcomes: need for intubation, need for vasopressors, age, gender, and PaO2/FiO2 ratio.

CONCLUSION

DT is a simple tool that might be utilized in the ICU to identify critically ill COVID-19 patients who are at high risk of 28-day ICU mortality. However, further studies and external validation are still required.

摘要

背景

由严重急性呼吸系统综合征冠状病毒 2 型(SARS-CoV-2)引起的 2019 冠状病毒病(COVID-19)目前是全球重症监护病房(ICU)收治患者的主要病因。机器学习在 ICU 中的作用正在不断发展,但目前仅限于诊断和预后价值。决策树(DT)算法是一种简单直观的机器学习方法,可对变量进行顺序非线性分析。它简单易用,在 COVID-19 期间,对于预测 ICU 结局和帮助进行关键决策(如在 ICU 床位有限的情况下进行临终决策和床位分配),可能成为床边医生的一种有价值的工具。在此,我们利用机器学习 DT 算法来描述一组预先设定的变量与入住 ICU 的成年 COVID-19 患者 28 天 ICU 结局之间的关联。我们强调在 COVID-19 大流行期间,在 ICU 中利用机器学习 DT 算法的价值。

方法

这是一项前瞻性多中心队列研究,涉及沙特阿拉伯的 14 家医院。我们纳入 2020 年 3 月 1 日至 2020 年 10 月 31 日期间入住 ICU 的危重症 COVID-19 患者。使用两种预测模型(常规逻辑回归和 DT 分析)确定 28 天 ICU 死亡率的预测因素。

结果

本研究共纳入 1468 例危重症 COVID-19 患者。28 天 ICU 死亡率为 540 例(36.8%),90 天死亡率为 600 例(40.9%)。DT 算法确定了五个整合到算法中以预测 28 天 ICU 结局的变量:需要插管、需要血管加压药、年龄、性别和 PaO2/FiO2 比值。

结论

DT 是一种简单的工具,可在 ICU 中用于识别 28 天 ICU 死亡率高风险的危重症 COVID-19 患者。然而,仍需要进一步的研究和外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/480a/9212964/98c25c3fc9bf/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验