Saha Arpita, Samaan Maggie, Peng Bo, Ning Xia
The Ohio State University, Columbus, Ohio, USA.
ACM BCB. 2023 Sep;2023. doi: 10.1145/3584371.3612986. Epub 2023 Oct 4.
The unprecedented scale of the COVID-19 pandemic created an alarming shortage of healthcare resources. To enable a more efficient resource allocation and targeted treatment, in this manuscript, we conducted a data-driven study of COVID-19 patients to predict patient outcomes and identify patient phenotypes. Specifically, we developed a multi-layered gated recurrent units-based model, referred to as mGRU-CP, to learn patient embeddings and estimate patient survival probabilities by leveraging their electronic health record (EHR) data in the COVID-19 Research Data Commons. We empirically compared mGRU-CP against four state-of-the-art baseline methods on three sets of patient features. The experimental results demonstrate that mGRU-CP could achieve competitive or superior performance over the baseline methods in all the settings. Our analysis also shows that the learned patient embeddings in mGRU-CP could enable meaningful patient phenotyping to better understand patient mortalities. Our study is significant in understanding patients in the past COVID-19 pandemic, and provides computational tools to predict patient outcomes and inform associated healthcare resource allocation for the future pandemics proactively.
新冠疫情前所未有的规模造成了令人担忧的医疗资源短缺。为了实现更高效的资源分配和精准治疗,在本论文中,我们对新冠患者进行了一项数据驱动的研究,以预测患者预后并识别患者表型。具体而言,我们开发了一种基于多层门控循环单元的模型,称为mGRU-CP,通过利用新冠研究数据共享库中的电子健康记录(EHR)数据来学习患者嵌入表示并估计患者生存概率。我们在三组患者特征上对mGRU-CP与四种先进的基线方法进行了实证比较。实验结果表明,在所有设置下,mGRU-CP都能取得与基线方法相当或更优的性能。我们的分析还表明,mGRU-CP中学习到的患者嵌入表示能够实现有意义的患者表型分析,从而更好地理解患者死亡率。我们的研究对于了解过去新冠疫情中的患者具有重要意义,并提供了计算工具来预测患者预后,为未来疫情的相关医疗资源分配提供前瞻性信息。