Suppr超能文献

一种用于从大规模电子健康记录数据中对新冠肺炎患者进行表征和表型分析的多层门控循环单元模型

A Multi-Layered GRU Model for COVID-19 Patient Representation and Phenotyping from Large-Scale EHR Data.

作者信息

Saha Arpita, Samaan Maggie, Peng Bo, Ning Xia

机构信息

The Ohio State University, Columbus, Ohio, USA.

出版信息

ACM BCB. 2023 Sep;2023. doi: 10.1145/3584371.3612986. Epub 2023 Oct 4.

Abstract

The unprecedented scale of the COVID-19 pandemic created an alarming shortage of healthcare resources. To enable a more efficient resource allocation and targeted treatment, in this manuscript, we conducted a data-driven study of COVID-19 patients to predict patient outcomes and identify patient phenotypes. Specifically, we developed a multi-layered gated recurrent units-based model, referred to as mGRU-CP, to learn patient embeddings and estimate patient survival probabilities by leveraging their electronic health record (EHR) data in the COVID-19 Research Data Commons. We empirically compared mGRU-CP against four state-of-the-art baseline methods on three sets of patient features. The experimental results demonstrate that mGRU-CP could achieve competitive or superior performance over the baseline methods in all the settings. Our analysis also shows that the learned patient embeddings in mGRU-CP could enable meaningful patient phenotyping to better understand patient mortalities. Our study is significant in understanding patients in the past COVID-19 pandemic, and provides computational tools to predict patient outcomes and inform associated healthcare resource allocation for the future pandemics proactively.

摘要

新冠疫情前所未有的规模造成了令人担忧的医疗资源短缺。为了实现更高效的资源分配和精准治疗,在本论文中,我们对新冠患者进行了一项数据驱动的研究,以预测患者预后并识别患者表型。具体而言,我们开发了一种基于多层门控循环单元的模型,称为mGRU-CP,通过利用新冠研究数据共享库中的电子健康记录(EHR)数据来学习患者嵌入表示并估计患者生存概率。我们在三组患者特征上对mGRU-CP与四种先进的基线方法进行了实证比较。实验结果表明,在所有设置下,mGRU-CP都能取得与基线方法相当或更优的性能。我们的分析还表明,mGRU-CP中学习到的患者嵌入表示能够实现有意义的患者表型分析,从而更好地理解患者死亡率。我们的研究对于了解过去新冠疫情中的患者具有重要意义,并提供了计算工具来预测患者预后,为未来疫情的相关医疗资源分配提供前瞻性信息。

相似文献

2
GRU-D-Weibull: A novel real-time individualized endpoint prediction.GRU-D-Weibull:一种新颖的实时个体化终点预测方法。
Artif Intell Med. 2023 Dec;146:102696. doi: 10.1016/j.artmed.2023.102696. Epub 2023 Nov 9.
6
Weakly Semi-supervised phenotyping using Electronic Health records.基于电子健康记录的弱监督表型研究
J Biomed Inform. 2022 Oct;134:104175. doi: 10.1016/j.jbi.2022.104175. Epub 2022 Sep 5.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验